Advertisement

Virus Genes

, Volume 39, Issue 1, pp 81–89 | Cite as

Comparative analysis of the large fragment of the 5′ untranslated region (LF-5′ UTR) of serotype A foot-and-mouth disease virus field isolates from India

  • Jajati K. MohapatraEmail author
  • Abhipsa Sahu
  • Sushanta K. Barik
  • Aniket Sanyal
  • Bramhadev Pattnaik
Article

Abstract

India is endemic for foot-and-mouth disease (FMD) and in recent years a unique group within serotype A, carrying a codon deletion at an antigenically critical site in capsid protein VP3 has emerged (VP359-deletion group). This tempted us to analyze the noncoding region, which is an under represented area, though critically associated with virus biology and pathogenesis. Analysis of the large fragment of 5′ untranslated region (LF-5′ UTR) of type A FMD virus revealed discrepancy in the overall tree topology between LF-5′ UTR and 1D region possibly due to independent evolution of coding and noncoding regions. The VP359-deletion group maintained its phylogenetic distinctness even at the LF-5′ UTR. Eighteen lineage specific signatures detected here support independent evolutionary paths for the lineages. Extensive deletions of 45 and 89 nucleotides corresponding to the pseudoknot region were noticed. Conservation pattern in the ‘A253AACA’ motif in the cre/bus stem-loop indicates the importance of first three ‘A’ residues in VPg uridylylation. Of the three polypyrimidine tract binding protein (PTB) binding sites mapped on the internal ribosome entry site (IRES), the pyrimidine tract (Py tract) in the loop of domain 2 was found to be maximally conserved and it might be the major PTB binding site. Strikingly, a deletion group lineage specific transversion was noticed in the Py tract at the 3′ end of IRES without significantly affecting its in vitro infectious titer. Hence, we presume that for efficient cap-independent viral translation, either a minimum number of pyrimidine residues rather than a complete Py tract or a Py tract tolerating transversions only at specific locations and a core motif ‘CUUU’ within the Py tract is essential.

Keywords

FMD virus Serotype A LF-5′ UTR Comparative analysis 

Notes

Acknowledgments

This work was supported by the Indian Council of Agricultural Research. We sincerely thank all the past and continuing scientists of PD on FMD who have been instrumental in maintaining the National FMD Virus Repository. Efforts of Dr G. K. Sharma in formatting the references is appreciated.

References

  1. 1.
    R.K. Jangra, C. Tosh, A. Sanyal, D. Hemadri, S.K. Bandyopadhyay, Virus Res. 112, 52–59 (2005). doi: https://doi.org/10.1016/j.virusres.2005.03.021 CrossRefGoogle Scholar
  2. 2.
    C. Tosh, A. Sanyal, D. Hemadri, R. Venkataraman, Arch. Virol. 147, 493–513 (2002). doi: https://doi.org/10.1007/s007050200002 CrossRefGoogle Scholar
  3. 3.
    J.K. Mohapatra, D. Hemadri, T.V.S. Rao, B.P. Sreenivasa, S. Subramaniam, A. Sanyal, T.R. Periyasamy, N.K. Singh, B. Pattnaik, R. Venkataramanan, Vet. Microbiol. 131, 65–72 (2008). doi: https://doi.org/10.1016/j.vetmic.2008.02.020 CrossRefGoogle Scholar
  4. 4.
    S. Forss, K. Strebel, E. Beck, H. Schaller, Nucleic Acids Res. 12, 6587–6601 (1984). doi: https://doi.org/10.1093/nar/12.16.6587 CrossRefGoogle Scholar
  5. 5.
    B.E. Clarke, A.L. Brown, K.M. Currey, S.E. Newton, D.J. Rowlands, A.R. Carroll, Nucleic Acids Res. 15, 7067–7079 (1987). doi: https://doi.org/10.1093/nar/15.17.7067 CrossRefGoogle Scholar
  6. 6.
    P.W. Mason, S.V. Bezborodova, T.M. Henry, J. Virol. 76, 9686–9694 (2002). doi: https://doi.org/10.1128/JVI.76.19.9686-9694.2002 CrossRefGoogle Scholar
  7. 7.
    G.J. Belsham, J.K. Brangwyn, J. Virol. 64, 5389–5395 (1990)PubMedPubMedCentralGoogle Scholar
  8. 8.
    R. Kuhn, N. Luz, E. Beck, J. Virol. 64, 4625–4631 (1990)PubMedPubMedCentralGoogle Scholar
  9. 9.
    E.V. Pilipenko, V.M. Blinov, B.K. Chernov, T.M. Dmitrieva, V.I. Agol, Nucleic Acids Res. 17, 5701–5711 (1989). doi: https://doi.org/10.1093/nar/17.14.5701 CrossRefGoogle Scholar
  10. 10.
    A. Nayak, I.G. Goodfellow, K.E. Woolaway, J. Birtley, S. Curry, G.J. Belsham, J. Virol. 80, 9865–9875 (2006). doi: https://doi.org/10.1128/JVI.00561-06 CrossRefGoogle Scholar
  11. 11.
    N. Luz, E. Beck, FEBS Lett. 269, 311–314 (1990). doi: https://doi.org/10.1016/0014-5793(90)81182-N CrossRefGoogle Scholar
  12. 12.
    S.R. Stewart, B.L. Semler, Semin. Virol. 8, 242–255 (1997). doi: https://doi.org/10.1006/smvy.1997.0127 CrossRefGoogle Scholar
  13. 13.
    S. Lopez de Quinto, E. Lafuente, E. Martinez-Salas, RNA 7, 1213–1226 (2001). doi: https://doi.org/10.1017/S1355838201010433 CrossRefGoogle Scholar
  14. 14.
    R. Ramos, E. Martinez-Salas, RNA 5, 1374–1383 (1999). doi: https://doi.org/10.1017/S1355838299991240 CrossRefGoogle Scholar
  15. 15.
    S. Biswas, A. Sanyal, D. Hemadri, C. Tosh, J.K. Mohapatra, R. Manoj Kumar, S.K. Bandyopadhaya, Arch. Virol. 150, 2217–2239 (2005). doi: https://doi.org/10.1007/s00705-005-0576-z CrossRefGoogle Scholar
  16. 16.
    C. Carrillo, E.R. Tulman, G. Delhon, Z. Lu, A. Carreno, A. Vagnozzi, G.F. Kutish, D.L. Rock, J. Virol. 79, 6487–6504 (2005). doi: https://doi.org/10.1128/JVI.79.10.6487-6504.2005 CrossRefGoogle Scholar
  17. 17.
    J.K. Mohapatra, A. Sanyal, D. Hemadri, C. Tosh, S. Biswas, T.J. Rasool, S.K. Bandyopadhyay, B. Pattnaik, Virus Res. 136, 16–29 (2008). doi: https://doi.org/10.1016/j.virusres.2008.04.010 CrossRefGoogle Scholar
  18. 18.
    E.V. Pilipenko, E.G. Victorova, S.T. Guest, V.I. Agol, R.P. Roos, EMBO J. 20, 6899–6908 (2001). doi: https://doi.org/10.1093/emboj/20.23.6899 CrossRefGoogle Scholar
  19. 19.
    C.E. Malnou, T.A. Poyry, R.J. Jackson, K.M. Kean, J. Virol. 76, 10617–10626 (2002). doi: https://doi.org/10.1128/JVI.76.21.10617-10626.2002 CrossRefGoogle Scholar
  20. 20.
    E. Martinez-Salas, J.C. Saiz, M. Davila, G.J. Belsham, E. Domingo, J. Virol. 67, 3748–3755 (1993)PubMedPubMedCentralGoogle Scholar
  21. 21.
    N.J. Knowles, A.R. Samuel, in Rpt. Sess. Res. Gp. Stand. Tech. Comm. Eur. Comm. Control of FMD (FAO), Vienna, Austria, September 1994, p. 45–53 (1995)Google Scholar
  22. 22.
    J.D. Thompson, D.G. Higgins, T.J. Gibson, Nucleic Acids Res. 22, 4673–4680 (1994). doi: https://doi.org/10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  23. 23.
    K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. (2007). doi:  https://doi.org/10.1093/molbev/msm092 CrossRefGoogle Scholar
  24. 24.
    N. Saitou, M. Nei, Mol. Biol. 4, 406–425 (1987)Google Scholar
  25. 25.
    P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy (Freeman, San Francisco, 1973)Google Scholar
  26. 26.
    J. Felsenstein, Evol. Int. J. Org. Evol. 39, 783–791 (1985). doi: https://doi.org/10.2307/2408678 CrossRefGoogle Scholar
  27. 27.
    K. Tamura, M. Nei, Mol. Biol. Evol. 10, 512–526 (1993)PubMedGoogle Scholar
  28. 28.
    K. Tamura, S. Kumar, Mol. Biol. Evol. 19, 1727–1736 (2002)CrossRefGoogle Scholar
  29. 29.
    S.C. Ray, SimPlot for Windows 95, version 2.5 (1999), www.med.jhu.edu/deptmed/sray/download. Accessed 15 Nov 2008.
  30. 30.
    J. Reeder, R. Giegerich, BMC Bioinformatics 5, 104 (2004). doi: https://doi.org/10.1186/1471-2105-5-104 CrossRefGoogle Scholar
  31. 31.
    L. Heath, E. van der Walt, A. Varsani, D.P. Martin, J. Virol. 80, 11827–11832 (2006). doi: https://doi.org/10.1128/JVI.01100-06 CrossRefGoogle Scholar
  32. 32.
    C. Escarmis, J. Dopazo, M. Davila, E.L. Palma, E. Domingo, Virus Res. 35, 155–167 (1995). doi: https://doi.org/10.1016/0168-1702(94)00091-P CrossRefGoogle Scholar
  33. 33.
    S. Lopez de Quinto, E. Martinez-Salas, J. Virol. 71, 4171–4175 (1997)PubMedPubMedCentralGoogle Scholar
  34. 34.
    O. Fernandez-Miragall, S. Lopez de Quinto, E. Martinez-Salas. Virus Res. 139, 172–182 (2009). doi: https://doi.org/10.1016/j.virusres.2008.07.009 CrossRefGoogle Scholar
  35. 35.
    S. Lopez de Quinto, E. Martinez-Salas, RNA 6, 1380–1392 (2000). doi: https://doi.org/10.1017/S1355838200000753 CrossRefGoogle Scholar
  36. 36.
    E.V. Pilipenko, T.V. Pestova, V.G. Kolupaeva, E.V. Khitrina, A.N. Poperechnaya, V.I. Agol, C.U.T. Hellen, Genes Dev. 14, 2028–2045 (2000)PubMedPubMedCentralGoogle Scholar
  37. 37.
    C. Escarmis, M. Toja, M. Medina, E. Domingo, Virus Res. 26, 113–125 (1992). doi: https://doi.org/10.1016/0168-1702(92)90151-X CrossRefGoogle Scholar
  38. 38.
    Q. Feng, H. Yu, Y. Liu, C. He, J. Hu, H. Sang, N. Ding, M. Ding, Y.W. Fung, L. Lau, A.C. Yu, J. Chen, Biochem. Biophys. Res. Commun. 323, 254–263 (2004). doi: https://doi.org/10.1016/j.bbrc.2004.08.086 CrossRefGoogle Scholar
  39. 39.
    P.W. Mason, M.J. Grubman, B. Baxt, Virus Res. 91, 9–32 (2003). doi: https://doi.org/10.1016/S0168-1702(02)00257-5 CrossRefGoogle Scholar
  40. 40.
    A.V. Paul, J. Yin, J. Mugavero, E. Rieder, Y. Liu, E. Wimmer, J. Biol. Chem. 278, 43951–43960 (2003). doi: https://doi.org/10.1074/jbc.M307441200 CrossRefGoogle Scholar
  41. 41.
    O. Fernandez-Miragall, E. Martinez-Salas, RNA 9, 1333–1344 (2003). doi: https://doi.org/10.1261/rna.5950603 CrossRefGoogle Scholar
  42. 42.
    P. Serrano, J. Gomez, E. Martinez-Salas, RNA 13, 849–859 (2007). doi: https://doi.org/10.1261/rna.506607 CrossRefGoogle Scholar
  43. 43.
    B.L. Walter, J.H. Nguyen, E. Ehrenfeld, B.L. Semler, RNA 5, 1570–1585 (1999). doi: https://doi.org/10.1017/S1355838299991483 CrossRefGoogle Scholar
  44. 44.
    I.A. Stassinopoulos, G.J. Belsham, RNA 7, 114–122 (2001). doi: https://doi.org/10.1017/S1355838201001170 CrossRefGoogle Scholar
  45. 45.
    E. Martinez-salas, S. Lopez de Quinto, R. Ramos, O. Fernandez-Miragall, Biochimie 84, 755–763 (2002). doi: https://doi.org/10.1016/S0300-9084(02)01408-6 CrossRefGoogle Scholar
  46. 46.
    O. Fernandez-Miragall, R. Ramos, J. Ramajo, E. Martinez-Salas, RNA 12, 223–234 (2006). doi: https://doi.org/10.1261/rna.2153206 CrossRefGoogle Scholar
  47. 47.
    P. Nissen, J.A. Ippolito, N. Ban, P.B. Moore, T.A. Steitz, Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001). doi: https://doi.org/10.1073/pnas.081082398 CrossRefGoogle Scholar
  48. 48.
    E. Martinez-Salas, M.P. Regalado, E. Domingo, J. Virol. 70, 992–998 (1996)PubMedPubMedCentralGoogle Scholar
  49. 49.
    L. Saleh, C.R. Rust, R. Fullkrug, E. Beck, G. Bassili, K. Ochs, M. Niepman, J. Gen. Virol. 82, 757–763 (2001)CrossRefGoogle Scholar
  50. 50.
    O. Hagenbuchle, M. Santer, J.A. Steitz, Cell 13, 551–563 (1978). doi: https://doi.org/10.1016/0092-8674(78)90328-8 CrossRefGoogle Scholar
  51. 51.
    V.G. Kolupaeva, C.U. Hellen, I.N. Shatsky, RNA 2, 1199–1212 (1996)PubMedPubMedCentralGoogle Scholar
  52. 52.
    N. Luz, E. Beck, J. Virol. 65, 6486–6494 (1991)PubMedPubMedCentralGoogle Scholar
  53. 53.
    C.R. Rust, K. Ochs, K. Meyer, E. Beck, M. Niepmann, J. Virol. 73, 6111–6113 (1999)PubMedPubMedCentralGoogle Scholar
  54. 54.
    A. Kaminski, G.J. Belsham, R.J. Jackson, EMBO J. 13, 1673–1681 (1994)CrossRefGoogle Scholar
  55. 55.
    R. Nicholson, J. Pelletier, S.Y. Le, N. Sonenberg, J. Virol. 65, 5886–5894 (1991)PubMedPubMedCentralGoogle Scholar
  56. 56.
    Y. Kaku, L.S. Chard, T. Inoue, G.J. Belsham, J. Virol. 76, 11721–11728 (2002). doi: https://doi.org/10.1128/JVI.76.22.11721-11728.2002 CrossRefGoogle Scholar
  57. 57.
    G.J. Belsham, N. Sonenberg, Microbiol. Rev. 60, 499–511 (1996)PubMedPubMedCentralGoogle Scholar
  58. 58.
    G.J. Belsham, R.J. Jackson, in Translational Control of Gene Expression, ed. by N. Sonenberg, J.W.B. Hershey, M.B. Mathews (Cold Spring Harbor, New York, 2000), pp. 869–900Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jajati K. Mohapatra
    • 1
    Email author
  • Abhipsa Sahu
    • 1
  • Sushanta K. Barik
    • 1
  • Aniket Sanyal
    • 1
  • Bramhadev Pattnaik
    • 1
  1. 1.Project Directorate on Foot and Mouth Disease, Indian Veterinary Research Institute CampusNainitalIndia

Personalised recommendations