Advertisement

Virus Genes

, Volume 39, Issue 1, pp 19–29 | Cite as

One-step column purification of herpes simplex virus 1 helicase–primase subcomplex using C-terminally his-tagged UL5 subunit

  • Uwe Schreiner
  • Myriam Theune
  • Frank Althof
  • Elke Kehm
  • Charles W. KnopfEmail author
Article

Abstract

A protocol for purification of the two-subunit complex of herpes simplex virus type 1 (HSV-1) helicase-primase by metal affinity chromatography is presented. In order to bind the enzyme complex consisting of UL5 and UL52 gene functions to the affinity column, the C-terminus of the UL5 gene of HSV-1 strain ANG was fused in-frame with a sequence encoding six histidines, resulting in a His6-tagged DNA helicase (UL5his) when expressed via recombinant baculovirus. In addition, hybridoma cell lines producing anti-UL5 IgG were generated for screening of DNA helicase expression. Initial purification trials revealed that the presence of low concentrations of imidazole in the wash buffers interfered with the binding of the helicase-primase subunit complex to the metal affinity resin. Alternative means, such as high salt, altered pH, and substitution of imidazole by histidine tetrapeptide (His4), were tested. From those, the addition of His4 in combination with an acidic pH turned out to be very efficient for the removal of protein contaminants from a Ni2+-NTA (nitrilotriacidic acid) affinity resin. By applying only one column step, the present protocol yields a helicase-primase preparation, which is suitable for inhibitor screening and further functional studies. The final preparation is free of interfering enzyme activities, and exerts each of the enzymatic functions described for a two subunit complex, i.e., DNA-dependent ATPase, DNA primase, and DNA helicase activities.

Keywords

Metal chelate affinity chromatography Histidine tag Herpes simplex virus 1 DNA helicase DNA primase ATPase 

References

  1. 1.
    D.N. Frick, A.M.I. Lam, Curr. Pharm. Des. 12, 1315–1338 (2006). doi: https://doi.org/10.2174/138161206776361147 CrossRefGoogle Scholar
  2. 2.
    S. Chattopadhyay, Y. Chen, S.K. Weller, Front. Biosci. 11, 2213–2223 (2006). doi: https://doi.org/10.2741/1964 CrossRefGoogle Scholar
  3. 3.
    A.E. Gorbalenya, E.V. Koonin, A.P. Donchenko, V.M. Blinov, FEBS Lett. 235, 16–24 (1988). doi: https://doi.org/10.1016/0014-5793(88)81226-2 CrossRefGoogle Scholar
  4. 4.
    S. Dracheva, E.V. Koonin, J.J. Crute, J. Biol. Chem. 270, 14148–14153 (1995). doi: https://doi.org/10.1074/jbc.270.23.14148 CrossRefGoogle Scholar
  5. 5.
    D.K. Klinedinst, M.D. Challberg, J. Virol. 68, 3693–3701 (1994)PubMedPubMedCentralGoogle Scholar
  6. 6.
    K.L. Graves-Woodward, J. Gottlieb, M.D. Challberg, S.K. Weller, J. Biol. Chem. 272, 4623–4630 (1997). doi: https://doi.org/10.1074/jbc.272.7.4623 CrossRefGoogle Scholar
  7. 7.
    J.M. Calder, N.D. Stow, Nucleic Acids Res. 18, 3573–3578 (1990). doi: https://doi.org/10.1093/nar/18.12.3573 CrossRefGoogle Scholar
  8. 8.
    J.J. Crute, E.S. Mocarski, I.R. Lehman, Nucleic Acids Res. 16, 6585–6596 (1988). doi: https://doi.org/10.1093/nar/16.14.6585 CrossRefGoogle Scholar
  9. 9.
    N. Tuteja, R. Tuteja, Eur. J. Biochem. 271, 1835–1848 (2004). doi: https://doi.org/10.1111/j.1432-1033.2004.04093.x CrossRefGoogle Scholar
  10. 10.
    J.J. Crute, I.R. Lehman, J. Biol. Chem. 264, 19266–19270 (1989)PubMedGoogle Scholar
  11. 11.
    F.C. Spector, L. Liang, H. Giordano, M. Sivaraja, M.G. Peterson, J. Virol. 72, 6979–6987 (1998)PubMedPubMedCentralGoogle Scholar
  12. 12.
    M. Sivaraja, H. Giordano, M.G. Peterson, Anal. Biochem. 265, 22–27 (1998). doi: https://doi.org/10.1006/abio.1998.2875 CrossRefGoogle Scholar
  13. 13.
    K.A. Ramirez-Aguilar, N.A. Low-Nam, R.D. Kuchta, Biochem. 41, 14569–14579 (2002). doi: https://doi.org/10.1021/bi026680v CrossRefGoogle Scholar
  14. 14.
    K.A. Ramirez-Aguilar, R.D. Kuchta, Biochem. 43, 1754–1762 (2004). doi: https://doi.org/10.1021/bi035519x CrossRefGoogle Scholar
  15. 15.
    K.A. Ramirez-Aguilar, R.D. Kuchta, Biochem. 43, 9084–9091 (2004). doi: https://doi.org/10.1021/bi049335+ CrossRefGoogle Scholar
  16. 16.
    K.A. Ramirez-Aguilar, C.L. Moore, R.D. Kuchta, Biochem. 44, 15585–15593 (2005). doi: https://doi.org/10.1021/bi0513711 CrossRefGoogle Scholar
  17. 17.
    Y. Chen, S.D. Carrington-Lawrence, P. Bai, S.K. Weller, J. Virol. 79, 9088–9096 (2005). doi: https://doi.org/10.1128/JVI.79.14.9088-9096.2005 CrossRefGoogle Scholar
  18. 18.
    M.S. Dodson, I.R. Lehman, Proc. Natl. Acad. Sci. USA 88, 1105–1109 (1991). doi: https://doi.org/10.1073/pnas.88.4.1105 CrossRefGoogle Scholar
  19. 19.
    R. Strick, J. Hansen, R. Bracht, D. Komitowski, C.W. Knopf, Intervirology 40, 41–49 (1997)CrossRefGoogle Scholar
  20. 20.
    K. Weisshart, C.W. Knopf, Eur. J. Biochem. 174, 707–716 (1988). doi: https://doi.org/10.1111/j.1432-1033.1988.tb14155.x CrossRefGoogle Scholar
  21. 21.
    G. Köhler, C. Milstein, Nature 256, 495–497 (1975). doi: https://doi.org/10.1038/256495a0 CrossRefGoogle Scholar
  22. 22.
    R.D. Possee, S.C. Howard, Nucleic Acids Res. 15, 10233–10248 (1987). doi: https://doi.org/10.1093/nar/15.24.10233 CrossRefGoogle Scholar
  23. 23.
    F.J.P. Kühn, C.W. Knopf, J. Biol. Chem. 271, 29245–29254 (1996). doi: https://doi.org/10.1074/jbc.271.28.16764 CrossRefGoogle Scholar
  24. 24.
    M. Theune, Doctoral thesis, Ruprecht-Karls-University, Heidelberg, Germany, 1996Google Scholar
  25. 25.
    D.J. McGeoch, M.A. Dalrymple, A.J. Davison, A. Dolan, M.C. Frame, D. McNab, L.J. Perry, J.E. Scott, P. Taylor, J. Gen. Virol. 69, 1531–1574 (1988). doi: https://doi.org/10.1099/0022-1317-69-7-1531 CrossRefGoogle Scholar
  26. 26.
    M.M. Bradford, Anal. Biochem. 72, 248–254 (1976). doi: https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  27. 27.
    R. Clark, D.P. Lane, R. Tijan, J. Biol. Chem. 256, 11854–11858 (1981)PubMedGoogle Scholar
  28. 28.
    G. Sherman, J. Gottlieb, M.D. Challberg, J. Virol. 66, 4884–4892 (1992)PubMedPubMedCentralGoogle Scholar
  29. 29.
    F. Althof, Doctoral thesis, Ruprecht-Karls-University, Heidelberg, Germany, 1997Google Scholar
  30. 30.
    E.A. Emini, J.V. Hughes, D.S. Perlow, J. Boger, J. Virol. 55, 836–839 (1985)PubMedPubMedCentralGoogle Scholar
  31. 31.
    U. Schreiner, Doctoral thesis, Ruprecht-Karls-University, Heidelberg, Germany, 1999Google Scholar
  32. 32.
    S. Biswas, G. Kleymann, M. Swift, L.S. Tiley, J. Lyall, J. Aguirre-Hernández, H.J. Field, Antimicrob. Chemother. 61, 1044–1047 (2008). doi: https://doi.org/10.1093/jac/dkn057 CrossRefGoogle Scholar
  33. 33.
    Y. Chen, C.M. Livingston, S.D. Carrington-Lawrence, P. Bai, S.K. Weller, J. Virol. 81, 8742–8751 (2007). doi: https://doi.org/10.1128/JVI.00174-07 CrossRefGoogle Scholar
  34. 34.
    N. Constantin, M.S. Dodson, J. Gen. Virol. 80, 2411–2415 (1999)CrossRefGoogle Scholar
  35. 35.
    G.W. McLean, A.P. Abbotts, M.E. Parry, H.S. Marsden, N.D. Stow, J. Gen. Virol. 75, 2699–2706 (1994). doi: https://doi.org/10.1099/0022-1317-75-10-2699 CrossRefGoogle Scholar
  36. 36.
    N.T. Le Gac, G. Villani, J.-S. Hoffmann, P.E. Boehmer, J. Biol. Chem. 271, 21645–21651 (1996). doi: https://doi.org/10.1074/jbc.271.35.21645 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Uwe Schreiner
    • 1
  • Myriam Theune
    • 1
  • Frank Althof
    • 1
  • Elke Kehm
    • 1
  • Charles W. Knopf
    • 1
    Email author
  1. 1.Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations