Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Genome organization and phylogenetic relationship of Pineapple mealybug wilt associated virus-3 with family Closteroviridae members

  • 289 Accesses

  • 13 Citations

Abstract

The nucleotide sequence of Pineapple mealybug wilt associated virus-3 (PMWaV-3) (Closteroviridae: Ampelovirus), spanning seven open reading frames (ORFs) and the untranslatable region of the 3′ end was determined. Based on the amino acid identities with orthologous ORFs of PMWaV-1 (54%–73%) and PMWaV-2 (13%–35%), we propose PMWaV-3 is a new species in the PMWaV complex. PMWaV-3 lacks an intergenic region between ORF1b and ORF2, encodes a relatively small, 28.8 kDa, coat protein, and lacks a coat protein duplicate. Phylogenetic analyses were used to analyze seven different domains and ORFs from members of the family Closteroviridae. Two distinct clades within the recognized genus Ampelovirus were observed; one that includes PMWaV-3 and PMWaV-1 and several GLRaVs and another that includes PMWaV-2 and GLRaV-3, the type member of the genus Ampelovirus.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    E.G. Borroto, M. Cintra, J. Gonzalez, C. Borroto, P. Oramas. Plant Dis. 82, 263 (1998). doi:https://doi.org/10.1094/PDIS.1998.82.2.263C

  2. 2.

    C.F. Gambley, V. Steele, A.D.W. Geering, J.E. Thomas, Australas. Plant Pathol. 37, 95–105 (2008). doi:https://doi.org/10.1071/AP07096

  3. 3.

    J.S. Hu, A. Gonsalves, D. Sether, D.E. Ullman, Acta Hortic 334, 411–416 (1993)

  4. 4.

    J.S. Hu, D.M. Sether, D.E. Ullman, Plant Pathol. 45, 829–836 (1996). doi:https://doi.org/10.1111/j.1365-3059.1996.tb02892.x

  5. 5.

    J.S. Hu, D.M. Sether, X.P. Liu, M. Wang, F. Zee, D. Ullman, Plant Dis. 81, 1150–1154 (1997). doi:https://doi.org/10.1094/PDIS.1997.81.10.1150

  6. 6.

    D.M. Sether, A.V. Karasev, C. Okumura, C. Arakawa, F. Zee, M.M. Kislan, J.L. Busto, J.S. Hu, Plant Dis. 85, 856–864 (2001). doi:https://doi.org/10.1094/PDIS.2001.85.8.856

  7. 7.

    D.M. Sether, M.J. Melzer, J.L. Busto, F. Zee, J.S. Hu, Plant Dis. 89, 450–456 (2005). doi:https://doi.org/10.1094/PD-89-0450

  8. 8.

    W. Wakman, D. Teakle, J.E. Thomas, R.G. Dietzgen, Aust. J. Agric. Sci. 46, 947–958 (1995). doi:https://doi.org/10.1071/AR9950947

  9. 9.

    D.M. Sether, J.S. Hu, D.E. Ullman, Phytopathology 88, 1224–1230 (1998). doi:https://doi.org/10.1094/PHYTO.1998.88.11.1224

  10. 10.

    D.M. Sether, J.S. Hu, Phytopathology 92, 928–935 (2002). doi:https://doi.org/10.1094/PHYTO.2002.92.9.928

  11. 11.

    D.M. Sether, J.S. Hu, Plant Dis. 86, 867–874 (2002). doi:https://doi.org/10.1094/PDIS.2002.86.8.867

  12. 12.

    M.J. Melzer, D.M. Sether, A.V. Karasev, J.S. Hu, Arch. Virol. 153, 707–714 (2008). doi:https://doi.org/10.1007/s00705-008-0051-8

  13. 13.

    M.J. Melzer, A.V. Karasev, D.M. Sether, J.S. Hu, J. Gen. Virol. 82, 1–7 (2001)

  14. 14.

    S.F. Atschul, W. Gish, W. Miller, E.W. Myers, J.C. Wooten, Matur. Gen. 6, 119–129 (1994)

  15. 15.

    S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucleic Acids Res. 25, 3389–3402 (1997). doi:https://doi.org/10.1093/nar/25.17.3389

  16. 16.

    J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, Nucleic Acids Res. 24, 4876–4882 (1997). doi:https://doi.org/10.1093/nar/25.24.4876

  17. 17.

    D.L. Swofford, PAUP*, PAUP*: Phylogenetics Using Parsimony (*and Other Methods) (Sinauer Associates, Inc., Sunderland, MA, 2000)

  18. 18.

    K.-S. Ling, H.-Y. Zhu, R.F. Drong, J.L. Slightom, J.R. McFerson, D. Gonsalves, J. Gen. Virol. 79, 1299–1307 (1998)

  19. 19.

    A. Marchler-Bauer, J.B. Anderson, M.K. Derbyshire, C. De Weese-Scott, N.R. Gonzales, M. Gwadz, L. Hao, S. He, D.I. Hurwitz, J.D. Jackson, Z. Ke, D. Krylov, C.J. Lanczycki, C.A. Liebert, C. Liu, F. Lu, S. Lu, G.H. Marchler, M. Mullokandov, J.S. Song, N. Thanki, R.A. Yamashita, J.J. Yin, D. Zhang, S.H. Bryant, Nucleic Acids Res. 35, D237–D240 (2007). doi:https://doi.org/10.1093/nar/gkl951

  20. 20.

    A.A. Agranovsky, E.V. Koonin, V.P. Boyko, E. Maiss, R. Frötschl, N.A. Lunina, J.G. Atabekov, Virology 198, 311–324 (1994). doi:https://doi.org/10.1006/viro.1994.1034

  21. 21.

    M. Alrwahnih, J.K. Uyemoto, B.W. Falk, A. Rowhani, Arch. Virol. 152, 2197–2206 (2007). doi:https://doi.org/10.1007/s00705-007-1064-4

  22. 22.

    V.V. Dolja, J.F. Kreuze, J.P.T. Valkonen, Virus Res. 117, 38–51 (2006). doi:https://doi.org/10.1016/j.virusres.2006.02.002

  23. 23.

    T. Satyanarayana, S. Gowda, M. Mawassi, M.R. Albiach-Marti, M.A. Ayllón, C. Robertson, S.M. Garnsey, W.O. Dawson, Virology 278, 253–265 (2000). doi:https://doi.org/10.1006/viro.2000.0638

  24. 24.

    L.Y. Geer, M. Domrachev, D.J. Lipman, S.H. Bryant, Genome Res. 12, 1619–1623 (2002). doi:https://doi.org/10.1101/gr.278202

  25. 25.

    E.V. Koonin, A.R. Mushegian, E.V. Ryabov, V.V. Dolja, J. Gen. Virol. 72, 2895–2903 (1991). doi:https://doi.org/10.1099/0022-1317-72-12-2895

  26. 26.

    H.R. Pappu, A.V. Karasev, E.J. Anderson, S.S. Pappu, M.E. Hilf, V.J. Febres, R.M.G. Eckloff, M. McCaffery, V. Byoko, S. Gowda, V.V. Dolja, E.V. Koonin, D.J. Gumpf, K.C. Cline, S.M. Garnsey, W.O. Dawson, R.F. Lee, C.L. Niblett, Virology 199, 35–46 (1994). doi:https://doi.org/10.1006/viro.1994.1095

  27. 27.

    H.Y. Zhu, K.S. Ling, D.E. Goszczynski, J.R. McFerson, D. Gonsalves, J. Gen. Virol. 79, 1289–1298 (1998)

  28. 28.

    M. Beuve, L. Sempe, O. Lemaire, J. Virol. Methods 141, 117–124 (2007). doi:https://doi.org/10.1016/j.jviromet.2006.11.042

  29. 29.

    V.I. Maliogka, C.I. Dovas, N.I. Katis, Virus Res. 135, 125–135 (2008). doi:https://doi.org/10.1016/j.virusres.2008.02.015

  30. 30.

    H.J. Maree, M.J. Freeborough, J.T. Burger, Arch. Virol. 153, 755–757 (2008). doi:https://doi.org/10.1007/s00705-008-0040-y

  31. 31.

    V.V. Dolja, V.P. Boyko, A.A. Agranovsky, E.V. Koonin, Virology 184, 79–86 (1991). doi:https://doi.org/10.1016/0042-6822(91)90823-T

  32. 32.

    C. Büchen-Osmond (ed.), Index of Viruses—Closteroviridae. (ICTVdB—The Universal Virus Database, version 4., Columbia University, New York, USA, 2006). http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm. Accessed 01 August 2008

  33. 33.

    B.G. Hall, Phylogenetic Trees Made Easy. A How-To Manual, 2nd edn. (Sinauer Associates, Inc., Sunderland, MA, 2004), p. 221

  34. 34.

    D.M. Sether, J.S. Hu, Australas. Plant Pathol. 30, 31–36 (2001). doi:https://doi.org/10.1071/AP00060

  35. 35.

    B.S. Sipes, D.M. Sether, J.S. Hu, Plant Dis. 86, 933–938 (2002). doi:https://doi.org/10.1094/PDIS.2002.86.9.933

Download references

Acknowledgments

This research funded, in part, by a Grant from the Hawaii Department of Agriculture (Contract No. 49048), a Grant through the Tropical/Subtropical Agricultural Research Program (Project No. HAW00985-10145), a grant from the United States Department of Agriculture-Cooperative State Research, Education, and Extension Service (USDA-CSREES) Grants Program-Pest Management Alternatives Program (Project No. HAW00937-G under agreement 2003-34381-13659), a Grant from the USDA-CSREES Regional Integrated Pest Management Competitive Grants Program-Western Region (Project No. Haw01951-G under agreement 2006-34103-17176).

Author information

Correspondence to John S. Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sether, D.M., Melzer, M.J., Borth, W.B. et al. Genome organization and phylogenetic relationship of Pineapple mealybug wilt associated virus-3 with family Closteroviridae members. Virus Genes 38, 414–420 (2009). https://doi.org/10.1007/s11262-009-0334-5

Download citation

Keywords

  • Virus genome
  • Pineapple
  • Mealybug wilt
  • Ananas comosus
  • Virus transmission