Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular analysis of duck enteritis virus US3, US4, and US5 gene

  • 184 Accesses

  • 12 Citations

Abstract

Here, we first present unique short (US)3, US4, and US5 gene sequences, with analysis, of duck enteritis virus (DEV) vaccine strain C-KCE. The assembled sequence comprises 5,742 nucleotides, which are amplified from the DEV genome by single oligonucleotide-nested polymerase chain reaction with primers designed according to our previous acquired sequence deposited in GenBank (accession no. EF619046). The predicted gene arrangement is colinear with the alphaherpesvirus herpes simplex virus within the US region. The N-glycosylated sites, signal peptide, transmembrane helices, RNA polymerase II transcriptional control elements, and polyadenylation signal, were predicted with network prediction programs. Phylogenetic analysis of the three putative proteins revealed that they had a close evolutionary relationship with the subfamily of Alphaherpesvirinae.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    S. Davison, K.A. Converse, A.N. Hamir, R.J. Eckroade, Avian Dis. 37, 1142–1146 (1993). doi:https://doi.org/10.2307/1591927

  2. 2.

    S.S. Breese, A.H. Dardiri, Virology 34, 160–169 (1968). doi:https://doi.org/10.1016/0042-6822(68)90019-6

  3. 3.

    E.F. Kaleta, Avian Pathol. 19, 193–211 (1990). doi:https://doi.org/10.1080/03079459008418673

  4. 4.

    P.J. Plummer, T. Alefantis, S. Kaplan, P. O’Connell, S. Shawky, K.A. Schat, Avian Dis. 42, 554–564 (1998). doi:https://doi.org/10.2307/1592682

  5. 5.

    S. Shawky, K. Schat, Avian Dis. 46, 308–313 (2002). doi:https://doi.org/10.1637/0005-2086(2002)046[0308:LSAROD]2.0.CO;2

  6. 6.

    C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, Virus Taxonomy (Elsevier Academic Press, California, 2005)

  7. 7.

    R. Gardner, J. Wilkerson, J.C. Johnson, Intervirology 36, 99–112 (1993)

  8. 8.

    A.E. Reynolds, E.G. Wills, R.J. Roller, B.J. Ryckman, J.D. Baines, J. Virol. 76, 8939–8952 (2002). doi:https://doi.org/10.1128/JVI.76.17.8939-8952.2002

  9. 9.

    L. Benetti, B. Roizman, Proc. Natl. Acad. Sci. USA 101, 9411–9416 (2004). doi:https://doi.org/10.1073/pnas.0403160101

  10. 10.

    J. Munger, B. Roizman, Proc. Natl. Acad. Sci. USA 98, 10410–10415 (2001). doi:https://doi.org/10.1073/pnas.181344498

  11. 11.

    P.D. Ogg, P.J. McDonell, B.J. Ryckman, C.M. Knudson, R.J. Roller, Virology 319, 212–224 (2004). doi:https://doi.org/10.1016/j.virol.2003.10.019

  12. 12.

    L.C. Tran, J.M. Kissner, L.E. Westerman, Proc. Natl. Acad. Sci. USA 97, 1818–1822 (2000). doi:https://doi.org/10.1073/pnas.020510297

  13. 13.

    A. Dolan, F.E. Jamieson, C. Cunningham, B.C. Barnett, D.J. McGeoch, J. Virol. 72, 2010–2021 (1998)

  14. 14.

    H. Ghiasi, A.B. Nesburn, S. Cai, S.L. Wechsler, Intervirology 41, 91–97 (1998). doi:https://doi.org/10.1159/000024919

  15. 15.

    D.J. McGeoch, A. Dolan, S. Donald, F.J. Rixon, J. Mol. Biol. 181, 1–13 (1985). doi:https://doi.org/10.1016/0022-2836(85)90320-1

  16. 16.

    E.A. Telford, M.S. Watson, K. McBride, A.J. Davison, Virology 189, 304–316 (1992). doi:https://doi.org/10.1016/0042-6822(92)90706-U

  17. 17.

    E.A. Telford, M.S. Watson, J. Perry, A.A. Cullinane, A.J. Davison, J. Gen. Virol. 79, 1197–1203 (1998)

  18. 18.

    Y. Sun, S.M. Brown, Virology 199, 448–452 (1994). doi:https://doi.org/10.1006/viro.1994.1143

  19. 19.

    Z. Antal, Curr. Genet. 46, 240–246 (2004). doi:https://doi.org/10.1007/s00294-004-0524-6

  20. 20.

    F.Y. Liu, B. Ma, Y. Zhao, Y. Zhang, Y.H. wu, X.M. Liu, J.W. Wang, Virus Genes 37, 328–332 (2008). doi:https://doi.org/10.1007/s11262-008-0266-5

  21. 21.

    Y. Li, W.J. OuYang, H.C. Yang, China. J. Vet. Med 43, 5–7 (2007)

  22. 22.

    H. Li, S. Liu, X. Kong, Virus Genes 33, 221–227 (2006). doi:https://doi.org/10.1007/s11262-005-0060-6

  23. 23.

    M.G. Reese, N.L. Harris, F·H. Eeckman, Biocomputing, in Proceedings of the 1996 Pacific Symposium (World Scientific Publishing Co., Singapore, 1996), pp. 2–7

  24. 24.

    M. Kozak, Cell 44, 283–292 (1986). doi:https://doi.org/10.1016/0092-8674(86)90762-2

  25. 25.

    D.J. McGeoch, S. Cook, J. Mol. Biol. 238, 9–22 (1994). doi:https://doi.org/10.1006/jmbi.1994.1264

  26. 26.

    H.S. Marsden, A. Buckmaster, J.W. Palfreyman, R.G. Hope, A.C. Minson, J. Virol. 50, 547–554 (1984)

  27. 27.

    H.K. Su, R. Eberle, R.J. Courtney, J. Virol. 61, 1735–1737 (1987)

  28. 28.

    D.D. Richman, A. Buckmaster, S. Bell, C. Hodgman, A.C. Minson, J. Virol. 57, 647–655 (1986)

  29. 29.

    H.E. Drummer, M.J. Studdert, B.S. Crabb, J. Gen. Virol. 79, 1205–1213 (1998)

  30. 30.

    B.S. Crabb, H.S. Nagesha, M.J. Studdert, Virology 190, 143–154 (1992). doi:https://doi.org/10.1016/0042-6822(92)91200-E

  31. 31.

    G.M. Keil, T. Engelhardt, A. Karger, M. Enz, J. Virol. 70, 3032–3038 (1996)

  32. 32.

    Y. Gomi, H. Sunamachi, Y. Mori, K. Nagaike, M. Takahashi, K. Yamanishi, J. Virol. 76, 11447–11459 (2002). doi:https://doi.org/10.1128/JVI.76.22.11447-11459.2002

Download references

Author information

Correspondence to Jun Wei Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Y., Wang, J.W., Ma, B. et al. Molecular analysis of duck enteritis virus US3, US4, and US5 gene. Virus Genes 38, 289–294 (2009). https://doi.org/10.1007/s11262-008-0326-x

Download citation

Keywords

  • Duck enteritis virus
  • US3
  • US4
  • US5
  • Single oligonucleotide nested polymerase chain reaction