Advertisement

Virus Genes

, Volume 38, Issue 2, pp 345–352 | Cite as

Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein

  • Zhe Zhao
  • Fei Ke
  • Yan Shi
  • Guang-Zhou Zhou
  • Jian-Fang Gui
  • Qi-Ya Zhang
Article

Abstract

The presence of thymidine kinase (TK) is a feature of many large DNA viruses. Here, a TK gene homologue was cloned and characterized from Rana grylio virus (RGV), a member of family Iridoviridae. RGV TK encodes a protein of 195 aa with a predicted molecular mass of 22.1 kDa. Homologues of the protein were present in all the currently sequenced iridoviruses, and phylogenetic analysis showed that it was much close to cellular TK type 2 (TK2), deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Subsequently, Western blotting revealed TK expression increased with time from 6 h post-infection in RGV-infected cells. Using drug inhibition analysis by protein synthesis inhibitor (cycloheximide) and DNA replication inhibitor (cytosine arabinofuranoside), RGV TK was classified as the early expression gene during in vitro infection. Subcellular localization by TK–GFP fusion protein expression and immunofluorescence staining showed RGV TK was an exclusively cytoplasmic protein in fish cells. Collectively, current data indicate that RGV TK was an early gene of iridovirus which encoded a cytoplasmic protein in fish cells.

Keywords

Rana grylio virus (RGV) Iridovirus Thymidine kinase Early viral gene Cytoplasmic protein 

Notes

Acknowledgements

This work was supported by grants from the National Major Basic Research Program (2004CB117403), the National 863 High Technology Research Foundation of China (2006AA09Z445, 2006AA100309 and 20060110A4013), the National Natural Science Foundation of China (30671616 and U0631008), and the Key Technology R & D Program of China (2006BAD03B05).

References

  1. 1.
    T. Williams, V. Barbosa-Solomieu, V.G. Chinchar, Adv. Virus Res. 65, 173–248 (2005). doi: 10.1016/S0065-3527(05)65006-3 PubMedCrossRefGoogle Scholar
  2. 2.
    J.K. Jancovich, J. Mao, V.G. Chinchar, C. Wyatt, S.T. Case, S. Kumar et al., Virology 316, 90–103 (2003). doi: 10.1016/j.virol.2003.08.001 PubMedCrossRefGoogle Scholar
  3. 3.
    V.G. Chinchar, S. Essbauer, J.G. He, A. Hyatt, T. Miyazaki, D. Seligy, et al., 2005. in Virus Taxonomy, ed. by C.M. Fauqet, M.A.M.J. Mayo, U. Desselberger, L.A. Ball (Elsevier/Academic Press, London, 2005), pp.145–162Google Scholar
  4. 4.
    C.A. Tidona, G. Darai, Virology 230, 207–216 (1997). doi: 10.1006/viro.1997.8456 PubMedCrossRefGoogle Scholar
  5. 5.
    J.G. He, M. Deng, S.P. Weng, Z. Li, S.Y. Zhou, Q.X. Long et al., Virology 291, 126–139 (2001). doi: 10.1006/viro.2001.1208 PubMedCrossRefGoogle Scholar
  6. 6.
    N.J. Jakob, K. Müller, U. Bahr, G. Darai, Virology 286, 182–196 (2001). doi: 10.1006/viro.2001.0963 PubMedCrossRefGoogle Scholar
  7. 7.
    J.G. He, L. Lü, M. Deng, H.H. He, S.P. Weng, X.H. Wang et al., Virology 292, 185–197 (2002). doi: 10.1006/viro.2001.1245 PubMedCrossRefGoogle Scholar
  8. 8.
    J.W. Do, C.H. Moon, H.J. Kim et al., Virology 325, 351–363 (2004). doi: 10.1016/j.virol.2004.05.008 PubMedCrossRefGoogle Scholar
  9. 9.
    W.J. Song, Q.W. Qin, J. Qiu, C.H. Huang, F. Wang, C.L. Hew, J. Virol. 78, 12576–12590 (2004). doi: 10.1128/JVI.78.22.12576-12590.2004 PubMedCrossRefGoogle Scholar
  10. 10.
    W.G. Tan, T.J. Barkman, V.G. Chinchar, K. Essani, Virology 323, 70–84 (2004). doi: 10.1016/j.virol.2004.02.019 PubMedCrossRefGoogle Scholar
  11. 11.
    Q.Y. Zhang, F. Xiao, J. Xie, Z.Q. Li, J.F. Gui, J. Virol. 78, 6982–6994 (2004). doi: 10.1128/JVI.78.13.6982-6994.2004 PubMedCrossRefGoogle Scholar
  12. 12.
    C.T. Tsai, J.W. Ting, M.H. Wu, M.F. Wu, I.C. Guo, C.Y. Chang, J. Virol. 79, 2010–2023 (2005). doi: 10.1128/JVI.79.4.2010-2023.2005 PubMedCrossRefGoogle Scholar
  13. 13.
    L. Lu, S.Y. Zhou, C. Chen, S.P. Weng, S.-M. Chan, J.G. He, Virology 339, 81–100 (2005). doi: 10.1016/j.virol.2005.05.021 PubMedCrossRefGoogle Scholar
  14. 14.
    G. Delhon, E.R. Tulman, C.L. Afonso, Z. Lu, J.J. Becnel, B.A. Moser et al., J. Virol. 80, 8439–8449 (2006). doi: 10.1128/JVI.00464-06 PubMedCrossRefGoogle Scholar
  15. 15.
    H.E. Eaton, J. Metcalf, E. Penny, V. Tcherepanov, C. Upton, C.R. Brunetti, Virol. J. 4, 11 (2007). doi: 10.1186/1743-422X-4-11 PubMedCrossRefGoogle Scholar
  16. 16.
    C.A. Tidona, G. Darai, Virus Genes 21, 77–81 (2000). doi: 10.1023/A:1008192616923 PubMedCrossRefGoogle Scholar
  17. 17.
    S. Eriksson, B. Munch-Petersen, K. Johansson, H. Eklund, Cell. Mol. Life Sci. 59, 1327–1346 (2002). doi: 10.1007/s00018-002-8511-x PubMedCrossRefGoogle Scholar
  18. 18.
    M.P. Sandrini, J. Piskur, Trends Biochem. Sci. 30, 225–228 (2005). doi: 10.1016/j.tibs.2005.03.003 PubMedCrossRefGoogle Scholar
  19. 19.
    G.A. Gentry, Pharmacol. Ther. 54, 319–355 (1992). doi: 10.1016/0163-7258(92)90006-L PubMedCrossRefGoogle Scholar
  20. 20.
    D.M. Moore, L. Zsak, J.G. Neilan, Z. Lu, D.L. Rock, J. Virol. 72, 10310–10315 (1998)PubMedGoogle Scholar
  21. 21.
    M.F. Tsai, H.T. Yu, H.F. Tzeng, J.H. Leu, C.M. Chou, C.J. Huang et al., Virology 277, 100–110 (2000). doi: 10.1006/viro.2000.0597 PubMedCrossRefGoogle Scholar
  22. 22.
    B. Ehlers, G. Dural, M. Marschall, V. Schregel, M. Goltz, J. Hentschke, J. Gen. Virol. 87, 2781–2789 (2006). doi: 10.1099/vir.0.81977-0 PubMedCrossRefGoogle Scholar
  23. 23.
    B.E. Coupar, S.G. Goldie, A.D. Hyatt, J.A. Pallister, Arch. Virol. 150, 1797–1812 (2005). doi: 10.1007/s00705-005-0544-7 PubMedCrossRefGoogle Scholar
  24. 24.
    S. Kit, W.C. Leung, G.N. Jorgensen, D. Trkula, D.R. Dubbs, Cold Spring Harb. Symp. Quant. Biol. 39, 703–715 (1975)PubMedGoogle Scholar
  25. 25.
    M.S. Chen, W.H. Prusoff, J. Biol. Chem. 253, 1325–1327 (1978)PubMedGoogle Scholar
  26. 26.
    S. Kit, D.R. Dubbs, Virology 26, 16–27 (1965). doi: 10.1016/0042-6822(65)90021-8 PubMedCrossRefGoogle Scholar
  27. 27.
    R.M.L. Buller, G.J. Palumbo, Microbiol. Rev. 55, 80–122 (1991)PubMedGoogle Scholar
  28. 28.
    G. Andrei, J. Balzarini, P. Fiten, E. DeClercq, G. Opdenakker, R. Snoeck, J. Virol. 79, 5863–5869 (2005). doi: 10.1128/JVI.79.9.5863-5869.2005 PubMedCrossRefGoogle Scholar
  29. 29.
    Q.Y. Zhang, Z.Q. Li, J.F. Gui, Aquaculture 175, 185–197 (1999). doi: 10.1016/S0044-8486(99)00041-1 CrossRefGoogle Scholar
  30. 30.
    Q.Y. Zhang, F. Xiao, Z.Q. Li, J.F. Gui, J.H. Mao, V.G. Chinchar, Dis. Aquat. Organ 48, 27–36 (2001). doi: 10.3354/dao048027 CrossRefGoogle Scholar
  31. 31.
    Q.Y. Zhang, Z. Zhao, F. Xiao, Z.Q. Li, J.F. Gui, Aquaculture 251, 1–10 (2006). doi: 10.1016/j.aquaculture.2005.05.012 CrossRefGoogle Scholar
  32. 32.
    W. Sun, Y.H. Huang, Z. Zhao, J.F. Gui, Q.Y. Zhang, Biochem. Biophys. Res. Commun. 351, 44–50 (2006). doi: 10.1016/j.bbrc.2006.09.169 PubMedCrossRefGoogle Scholar
  33. 33.
    Z. Zhao, F. Ke, J.F. Gui, Q.Y. Zhang, Virus Res. 123, 128–137 (2007). doi: 10.1016/j.virusres.2006.08.007 PubMedCrossRefGoogle Scholar
  34. 34.
    Z. Zhao, F. Ke, Y.H. Huang, J.G. Zhao, J.F. Gui, Q.Y. Zhang, J. Gen. Virol. 89, 1866–1872 (2008). doi: 10.1099/vir.0.2008/000810-0 PubMedCrossRefGoogle Scholar
  35. 35.
    S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller et al., Nucleic Acids Res. 25, 3389–3402 (1997). doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  36. 36.
    K. Tamura, J. Dudley, M. Nei, S. Kumar, Mol. Biol. Evol. 24, 1596–1599 (2007). doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  37. 37.
    D.B. Willis, D. Foglesong, A. Granoff, J. Virol. 53, 905–912 (1984)Google Scholar
  38. 38.
    J. Mao, T.N. Tham, G.A. Gentry, A.M. Aubertin, V.G. Chinchar, Virology 216, 431–436 (1996). doi: 10.1006/viro.1996.0080 PubMedCrossRefGoogle Scholar
  39. 39.
    Z. Zhao, Y. Shi, F. Ke, W. Sun, J.F. Gui, Q.Y. Zhang, Virology 372, 118–126 (2008). doi: 10.1016/j.virol.2007.10.028 PubMedCrossRefGoogle Scholar
  40. 40.
    H.F. Tzeng, Z.F. Chang, S.E. Peng, C.H. Wang, J.Y. Lin, G.H. Kou et al., Virology 299, 248–255 (2002). doi: 10.1006/viro.2002.1480 PubMedCrossRefGoogle Scholar
  41. 41.
    A.R. Van Rompay, M. Johansson, A. Karlsson, Pharmacol. Ther. 100, 119–139 (2003). doi: 10.1016/j.pharmthera.2003.07.001 PubMedCrossRefGoogle Scholar
  42. 42.
    M.N. Prichard, A.D. Williams, K.A. Keith, E.A. Harden, E.R. Kern, Antiviral Res. 71, 1–6 (2006). doi: 10.1016/j.antiviral.2006.01.013 PubMedCrossRefGoogle Scholar
  43. 43.
    J. Piskur, M.P. Sandrini, W. Knecht, B. Munch-Petersen, FEBS Lett. 560, 3–6 (2004). doi: 10.1016/S0014-5793(04)00081-X PubMedCrossRefGoogle Scholar
  44. 44.
    R. Nalcacioglu, H. Marks, J.M. Vlak, Z. Demirbag, M.M. van Oers, Virology 317, 321–329 (2003). doi: 10.1016/j.virol.2003.08.007 PubMedCrossRefGoogle Scholar
  45. 45.
    R. Nalcacioglu, I.A. Ince, J.M. Vlak, Z. Demirbag, M.M. van Oers, J. Gen. Virol. 88, 2488–2494 (2007). doi: 10.1099/vir.0.82947-0 PubMedCrossRefGoogle Scholar
  46. 46.
    D.T. Lua, M. Yasuike, I. Hirono, T. Aoki, J. Virol. 79, 15151–15164 (2005). doi: 10.1128/JVI.79.24.15151-15164.2005 PubMedCrossRefGoogle Scholar
  47. 47.
    L.M. Chen, F. Wang, W. Song, C.L. Hew, J. Gen. Virol. 87, 2907–2915 (2006). doi: 10.1099/vir.0.82219-0 PubMedCrossRefGoogle Scholar
  48. 48.
    L. Haarr, T. Flatmark, J. Gen. Virol. 68, 2817–2829 (1987). doi: 10.1099/0022-1317-68-11-2817 PubMedCrossRefGoogle Scholar
  49. 49.
    B. Degrève, M. Johansson, E. De Clercq, A. Karlsson, J. Balzarini, J. Virol. 2, 9535–9543 (1998)Google Scholar
  50. 50.
    B. Degrève, R. Esnouf, E. De Clercq, J. Balzarini, Biochem. Biophys. Res. Commun. 4, 32–38 (1999)Google Scholar
  51. 51.
    A. Söling, A. Simm, N. Rainov, FEBS Lett. 527, 153–158 (2002). doi: 10.1016/S0014-5793(02)03201-5 PubMedCrossRefGoogle Scholar
  52. 52.
    J.W. Ting, M.F. Wu, C.T. Tsai, C.C. Lin, I.C. Guo, C.Y. Chang, J. Gen. Virol. 85, 2883–2892 (2004). doi: 10.1099/vir.0.80249-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhe Zhao
    • 1
  • Fei Ke
    • 1
  • Yan Shi
    • 1
  • Guang-Zhou Zhou
    • 1
  • Jian-Fang Gui
    • 1
  • Qi-Ya Zhang
    • 1
  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences, Graduate School of Chinese Academy of SciencesWuhanChina

Personalised recommendations