Advertisement

Virus Genes

, Volume 38, Issue 2, pp 259–262 | Cite as

The selection pressure analysis of chicken anemia virus structural protein gene VP1

  • Dong Wang
  • Wei Fan
  • Guan-Zhu Han
  • Cheng-Qiang He
Article

Abstract

Chicken anemia virus (CAV) is the pathogen of chicken infectious anemia. To clarify the driving force in CAV evolution, we have detected positive selection in the structural protein gene VP1 by using maximum-likelihood models. Strong evidence was found that VP1 proteins were subject to the high rates of positive selection, and eight sites were identified to be under positive selection using the Bayes Empirical Bayesian method. Interestingly, four selected sites (amino acids 75, 125, 141, and 144) might be responsible for the attenuation exhibited. One selected site (amino acid 287) was connected with the virulence of CAV. This study provided some implication for the evolution of CAV, development of vaccines, and investigation into the structural and functional profiles of the VP1 protein.

Keywords

Chicken anemia virus VP1 Positive selection Virulence 

Notes

Acknowledgement

This work was supported by Innovative Post-doctoral Project Foundation of Shandong Province in China (200702013).

References

  1. 1.
    B.M. Adair, F. McNeilly, C.D. McConnell, D. Todd, R.T. Nelson, M.S. McNulty, Avian. Dis. 35, 783–792 (1991). doi: 10.2307/1591611 PubMedCrossRefGoogle Scholar
  2. 2.
    C.R. Pringle, Arch. Virol. 144, 2065–2070 (1999). doi: 10.1007/s007050050728 PubMedCrossRefGoogle Scholar
  3. 3.
    H. Gelderblom, S. Kling, R. Lurz, I. Tischer, V. von Bulow, Arch. Virol. 109, 115–120 (1989). doi: 10.1007/BF01310522 PubMedCrossRefGoogle Scholar
  4. 4.
    B.M. Meehan, D. Todd, J.L. Creelan, J.A. Earle, E.M. Hoey, M.S. McNulty, Arch. Virol. 124, 301–319 (1992). doi: 10.1007/BF01309811 PubMedCrossRefGoogle Scholar
  5. 5.
    S. Jagadeeshan, R.S. Singh, Mol. Biol. Evol. 24, 929–938 (2007). doi: 10.1093/molbev/msm009 PubMedCrossRefGoogle Scholar
  6. 6.
    C. Seoighe, F. Ketwaroo, V. Pillay, K. Scheffler, N. Wood, R. Duffet, M. Zvelebil, N. Martinson, J. McIntyre, L. Morris, W. Hide, Mol. Biol. Evol. 24, 1025–1031 (2007). doi: 10.1093/molbev/msm021 PubMedCrossRefGoogle Scholar
  7. 7.
    L. Heath, D.P. Martin, L. Warburton, M. Perrin, W. Horsfield, C. Kingsley, E.P. Rybicki, A.L. Williamson, J. Virol. 78, 9277–9284 (2004). doi: 10.1128/JVI.78.17.9277-9284.2004 PubMedCrossRefGoogle Scholar
  8. 8.
    A. Olvera, M. Cortey, J. Segalés, Virology 357, 175–185 (2007). doi: 10.1016/j.virol.2006.07.047 PubMedCrossRefGoogle Scholar
  9. 9.
    M. Kimura, Sci. Am. 241, 98–100, 102, 108 passim (1979)Google Scholar
  10. 10.
    Z. Yang, Mol. Biol. Evol. 15, 568–573 (1998)PubMedGoogle Scholar
  11. 11.
    Z. Yang, R. Nielsen, J. Mol. Evol. 46, 409–418 (1998). doi: 10.1007/PL00006320 PubMedCrossRefGoogle Scholar
  12. 12.
    D. Todd, K.A. Mawhinney, M.S. McNulty, J. Clin. Microbiol. 30, 1661–1666 (1992)PubMedGoogle Scholar
  13. 13.
    A.N. Scott, M.S. McNulty, D. Todd, Arch. Virol. 146, 713–728 (2001). doi: 10.1007/s007050170141 PubMedCrossRefGoogle Scholar
  14. 14.
    R.W. Renshaw, C. Soine, T. Weinkle, P.H. O’Connell, K. Ohashi, S. Watson, B. Lucio, S. Harrington, K.A. Schat, J. Virol. 70, 8872–8878 (1996)PubMedGoogle Scholar
  15. 15.
    C.Q. He, N.Z. Ding, W. Fan, Y.H. Wu, J.P. Li, Y.L. Li, Virology 366, 1–7 (2007). doi: 10.1016/j.virol.2007.06.007 PubMedCrossRefGoogle Scholar
  16. 16.
    J.D. Thompson, D.G. Higgins, T.J. Gibson, Nucl. Acids Res. 22, 4673–4680 (1994). doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  17. 17.
    M. Anisimova, R. Nielsen, Z. Yang, Genetics 164, 1229–1236 (2003)PubMedGoogle Scholar
  18. 18.
    M. Anisimova, J.P. Bielawski, Z. Yang, Mol. Biol. Evol. 19, 950–958 (2002)PubMedGoogle Scholar
  19. 19.
    H.F. Tippmann, Brief. Bioinform. 5, 82–87 (2004). doi: 10.1093/bib/5.1.82 PubMedCrossRefGoogle Scholar
  20. 20.
    S. Guindon, O. Gascuel, Syst. Biol. 52, 696–704 (2003). doi: 10.1080/10635150390235520 PubMedCrossRefGoogle Scholar
  21. 21.
    A.S. Tanabe, Mol. Ecol. Notes 7, 962–964 (2007). doi: 10.1111/j.1471-8286.2007.01807.x CrossRefGoogle Scholar
  22. 22.
    Z. Yang, Mol. Biol. Evol. 24, 1586–1591 (2007). doi: 10.1093/molbev/msm088 PubMedCrossRefGoogle Scholar
  23. 23.
    R. Nielsen, Z. Yang, Genetics 148, 929–936 (1998)PubMedGoogle Scholar
  24. 24.
    Z. Yang, R. Nielsen, Mol. Biol. Evol. 19, 908–917 (2002)PubMedGoogle Scholar
  25. 25.
    M. Anisimova, J.P. Bielawski, Z. Yang, Mol. Biol. Evol. 18, 1585–1592 (2001)PubMedGoogle Scholar
  26. 26.
    Z. Yang, W.S. Wong, R. Nielsen, Mol. Biol. Evol. 22, 1107–1118 (2005). doi: 10.1093/molbev/msi097 PubMedCrossRefGoogle Scholar
  27. 27.
    S.L.K. Pond, S.D.W. Frost, Mol. Biol. Evol. 22(5), 1208–1222 (2005). doi: 10.1093/molbev/msi105 CrossRefGoogle Scholar
  28. 28.
    D. Todd, A.N. Scott, N.W. Ball, B.J. Borghmans, B.M. Adair, J. Virol. 76, 8472–8474 (2002). doi: 10.1128/JVI.76.16.8472-8474.2002 PubMedCrossRefGoogle Scholar
  29. 29.
    S. Yamaguchi, T. Imada, N. Kaji, M. Mase, K. Tsukamoto, N. Tanimura, N. Yuasa, J. Gen. Virol. 82, 1233–1238 (2001)PubMedGoogle Scholar
  30. 30.
    B. Soubeyrand, S.A. Plotkin, Nature 417, 609–610 (2002). doi: 10.1038/417609b PubMedCrossRefGoogle Scholar
  31. 31.
    S. Gandon, M.J. Mackinnon, S. Nee, A.F. Read, Nature 414, 751–756 (2001). doi: 10.1038/414751a PubMedCrossRefGoogle Scholar
  32. 32.
    D. Todd, J.L. Creelan, T.J. Connor, N.W. Ball, A.N. Scott, B.M. Meehan, G.F. McKenna, M.S. McNulty, Avian. Pathol. 32, 375–382 (2003). doi: 10.1080/037945031000121121 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dong Wang
    • 1
  • Wei Fan
    • 2
  • Guan-Zhu Han
    • 1
  • Cheng-Qiang He
    • 1
  1. 1.College of Life ScienceShandong Normal UniversityJinanChina
  2. 2.Hospital of QiluShandong UniversityJinanChina

Personalised recommendations