Advertisement

Virus Genes

, 38:85 | Cite as

Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes

  • Carmina Gallardo
  • Dufton M. Mwaengo
  • Joseph M. Macharia
  • Marisa Arias
  • Evans A. Taracha
  • Alejandro Soler
  • Edward Okoth
  • Elena Martín
  • Jackline Kasiti
  • Richard P. Bishop
Article

Abstract

Complete sequencing of p54-gene from 67 European, American, and West and East African Swine Fever virus (ASFV) isolates revealed that West African and European ASFV isolates classified within the predominant Genotype I according to partial sequencing of p72 were discriminated into four major sub-types on the basis of their p54 sequences. This highlighted the value of p54 gene sequencing as an additional, intermediate-resolution, molecular epidemiological tool for typing of ASFV viruses. We further evaluated p54-based genotyping, in combination with partial sequences of two other genes, for determining the genetic relationships and origin of viruses responsible for disease outbreaks in Kenya. Animals from Western and central Kenya were confirmed as being infected with ASFV using a p72 gene-based PCR assay, following outbreaks of severe hemorrhagic disease in domestic pigs in 2006 and 2007. Eleven hemadsorbing viruses were isolated in macrophage culture and genotyped using a combination of full-length p54-gene sequencing, partial p72-gene sequencing, and analysis of tetrameric amino acid repeat regions within the variable region of the B602L gene (CVR). The data revealed that these isolates were identical in their p72 and p54 sequence to viruses responsible for ASF outbreaks in Uganda in 2003. There was a minor difference in the number of tetrameric repeats within the B602L sequence of the Kenyan isolates that caused the second Kenyan outbreak in 2007. A practical implication of the genetic similarity of the Kenyan and Ugandan viral isolates is that ASF control requires a regional approach.

Keywords

ASFV Epidemiology Genotyping p72 p54 CVR 

Notes

Acknowledgments

The present work was partly supported under the grant ILRI2003-001 funded by the Spanish Ministerio de Innovacion y Ciencia and by the European Union through the network of excellence “EPIZONE.” We greatly appreciate the intellectual and practical contributions of our colleagues at Centro de Investigación en Sanidad Animal (CISA-INIA) and International Livestock Research Institute (ILRI).

References

  1. 1.
    L.K. Dixon, J.M. Escribano, C. Martins, D.L. Rock, M.L. Salas, P.J. Wilkinson, in Virus taxonomy, VIIIth Report of the ICTV, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (Elsevier/Academic Press, London, 2005), pp. 135–143Google Scholar
  2. 2.
    E.V. Genovesi, R.C. Knudsen, T.C. Whyard, C.A. Mebus, Am. J. Vet. Res. 49, 338–344 (1988)PubMedGoogle Scholar
  3. 3.
    J.M. Haresnape, P.J. Wilkinson, Epidemiol. Infect. 102, 507–522 (1989)PubMedCrossRefGoogle Scholar
  4. 4.
    W.P.J. Plowright, M.A. Pierce, Nature 221, 1071–1073 (1969). doi: 10.1038/2211071a0 PubMedCrossRefGoogle Scholar
  5. 5.
    C. Sanchez Botija, Bull. Off. Int. Epizoot. 60, 895–899 (1963)Google Scholar
  6. 6.
    A. González, A. Talavera, J.M. Almendral, E. Viñuela, Nucleic Acids Res. 14(17), 6835–6844 (1986)PubMedCrossRefGoogle Scholar
  7. 7.
    J.M. Sogo, J.M. Almendral, A. Talavera, E. Viñuela, Virology 133(2), 271–275 (1984)PubMedCrossRefGoogle Scholar
  8. 8.
    R.D. Wesley, A.E. Tuthill, Prev.Vet. Med. 2, 53–62 (1984). doi: 10.1016/0167-5877(84)90048-5 CrossRefGoogle Scholar
  9. 9.
    R. Yáñez, J. Rodríguez, M. Nogal, L. Yuste, C. Enríquez, J. Rodríguez, E. Viñuela, Virology 208, 249–278 (1995). doi: 10.1006/viro.1995.1149 PubMedCrossRefGoogle Scholar
  10. 10.
    M. Aguero, R. Blasco, P. Wilkinson, E. Vinuela, Virology 176, 195–204 (1990). doi: 10.1016/0042-6822(90)90244-L PubMedCrossRefGoogle Scholar
  11. 11.
    F. Almazan, J.R. Murguia, J.M. Rodriguez, I. Delavega, E. Vinuela, J. Gen. Virol. 76, 729–740 (1995). doi: 10.1099/0022-1317-76-4-729 PubMedCrossRefGoogle Scholar
  12. 12.
    R. Blasco, I. Delavega, F. Almazan, M. Aguero, E. Vinuela, Virology 173, 251–257 (1989). doi: 10.1016/0042-6822(89)90241-9 PubMedCrossRefGoogle Scholar
  13. 13.
    L.K. Dixon, C. Bristow, P.J. Wilkinson, K.J. Sumption, J. Mol. Biol. 216, 677–688 (1990). doi: 10.1016/0022-2836(90)90391-X PubMedCrossRefGoogle Scholar
  14. 14.
    P.M. Irusta, M.V. Borca, G.F. Kutish, Z. Lu, E. Caler, C. Carrillo, D.L. Rock, Virology 220, 20–27 (1996). doi: 10.1006/viro.1996.0281 PubMedCrossRefGoogle Scholar
  15. 15.
    F. Rodriguez, C. Alcaraz, A. Eiras, R.J. Yanez, J.M. Rodriguez, C. Alonso, J.F. Rodriguez, J.M. Escribano, J. Virol. 68, 7244–7252 (1994)PubMedGoogle Scholar
  16. 16.
    K.J. Sumption, G.H. Hutchings, P.J. Wilkinson, L.K. Dixon, J. Gen. Virol. 71, 2331–2340 (1990). doi: 10.1099/0022-1317-71-10-2331 PubMedCrossRefGoogle Scholar
  17. 17.
    C.I. Boshoff, A.D. Bastos, L.J. Gerber, W. Vosloo, Vet. Microbiol. 121(1–2), 45–55 (2007)PubMedCrossRefGoogle Scholar
  18. 18.
    B.A. Lubisi, A.D.S. Bastos, R.M. Dwarka, W. Vosloo, Arch. Virol. 150, 2439–2452 (2005). doi: 10.1007/s00705-005-0602-1 PubMedCrossRefGoogle Scholar
  19. 19.
    A.D. Bastos, M.L. Penrith, F. Macome, F. Pinto, G.R. Thomson, Vet. Microbiol. 103(3–4), 169–182 (2004)PubMedCrossRefGoogle Scholar
  20. 20.
    B.A. Lubisi, A.D. Bastos, R.M. Dwarka, W. Vosloo, Virus Genes 35(3), 729–735 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    S.B. Phologane, A.D. Bastos, M.L. Penrith, Virus Genes 31(3), 357–360 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    H. Sun, S.C. Jacobs, G.L. Smith, L.K. Dixon, R.M. Parkhouse, J. Gen. Virol. 76(Pt 5), 1117–1127 (1995)PubMedCrossRefGoogle Scholar
  23. 23.
    A.D.S. Bastos, M.L. Penrith, C. Cruciere, J.L. Edrich, G. Hutchings, F. Roger, E. Couacy-Hymann, G.R. Thomson, Arch. Virol. 148, 693–706 (2003). doi: 10.1007/s00705-002-0946-8 PubMedCrossRefGoogle Scholar
  24. 24.
    M. Agüero, J. Fernández, L. Romero, C. Sánchez Mascaraque, M. Arias, J.M. Sánchez-Vizcaíno, J. Clin. Microbiol. 41(9), 4431–4434 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    W. Malmquist, D. Hay, Am. J. Vet. Res. 21, 104–108 (1960)PubMedGoogle Scholar
  26. 26.
    R.J. Nix, C. Gallardo, G. Hutchings, E. Blanco, L.K. Dixon, Arch. Virol. 151(12), 2475–2494 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    S. Kumar, K. Tamura, I.B. Jakobsen, M. Nei, Bioinformatics 17(12), 1244–1245 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    E.C. Anderson, G.H. Hutchings, G. Mukarati, P.J. Wilkinson, Vet. Microbiol. 62, 1–15 (1998). doi: 10.1016/S0378-1135(98)00187-4 PubMedCrossRefGoogle Scholar
  29. 29.
    C.A.L. Oura, P.P. Powell, E. Anderson, R.M.E. Parkhouse, J. Gen. Virol. 79, 1439–1443 (1998)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carmina Gallardo
    • 1
    • 2
  • Dufton M. Mwaengo
    • 3
  • Joseph M. Macharia
    • 4
  • Marisa Arias
    • 1
  • Evans A. Taracha
    • 2
  • Alejandro Soler
    • 1
  • Edward Okoth
    • 2
  • Elena Martín
    • 1
  • Jackline Kasiti
    • 4
  • Richard P. Bishop
    • 2
  1. 1.Centro de Investigación en Sanidad Animal (CISA-INIA)ValdeolmosSpain
  2. 2.International Livestock Research Institute (ILRI)NairobiKenya
  3. 3.Department of Medical Microbiology, College of Health SciencesUniversity of NairobiNairobiKenya
  4. 4.Department of Veterinary Services, Central Veterinary Research LaboratoriesMinistry of Livestock Development Private BagNairobiKenya

Personalised recommendations