Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A unique substitution at position 333 on the glycoprotein of rabies virus street strains isolated from non-hematophagous bats in Brazil


The amino acid R or K at position 333 on the glycoprotein of the rabies virus is considered necessary for virulence in adult mice. Although some exceptions exist, substitution at this position causes expression of a phenotype that is either less pathogenic or non-virulent. To date, such substitutions have only been found in fixed strains of rabies virus. In this study, the authors found 333H, 333N, and 333Q substitutions at this position in rabies virus street strains isolated from non-hematophagous bats in Brazil. These strains showed pathogenicity and lethality on passage using adult mice with the intracerebral route and were confirmed rabies-positive by immunofluorescent assay. This suggests that these strains maintain virulence. Our findings indicate that rabies virus street strains with these substitutions exist in the field and may result in infection cycles.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    H. Badrane, N. Tordo, Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 75, 8096–8104 (2001). doi:https://doi.org/10.1128/JVI.75.17.8096-8104.2001

  2. 2.

    A. Benmansour, H. Leblois, P. Coulon, C. Tuffereau, Y. Gaudin, A. Flamand, F. Lafay, Antigenicity of rabies virus glycoprotein. J. Virol. 65, 4198–4203 (1991)

  3. 3.

    B. Dietzschold, W.H. Wunner, T.J. Wiktor, A.D. Lopes, M. Lafon, C.L. Smith, H. Koprowski, Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc. Natl. Acad. Sci. USA 80, 70–74 (1983). doi:https://doi.org/10.1073/pnas.80.1.70

  4. 4.

    B. Dietzschold, C.E. Rupprecht, M. Tollis, M. Lafon, J. Mattei, T.J. Wiktor, H. Koprowski, Antigenic diversity of the glycoprotein and nucleocapsid proteins of rabies and rabies-related viruses: implications for epidemiology and control of rabies. Rev. Infect. Dis. 10(Suppl 4), S785–S798 (1988)

  5. 5.

    B. Dietzschold, M. Gore, D. Marchadier, H.S. Niu, H.M. Bunschoten, L. Otvos Jr., W.H. Wunner, H.C. Ertl, A.D. Osterhaus, H. Koprowski, Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J. Virol. 64, 3804–3809 (1990)

  6. 6.

    M. Faber, M.L. Faber, A. Papaneri, M. Bette, E. Weihe, B. Dietzscholdand, M.J. Schnell, A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J. Virol. 79, 14141–14148 (2005). doi:https://doi.org/10.1128/JVI.79.22.14141-14148.2005

  7. 7.

    Y. Gaudin, C. Tuffereau, D. Segretain, M. Knossow, A. Flamand, Reversible conformational changes and fusion activity of rabies virus glycoprotein. J. Virol. 65, 4853–4859 (1991)

  8. 8.

    H. Ito, N. Minamoto, T. Watanabe, H. Goto, L.T. Rong, M. Sugiyama, T. Kinjo, K. Mannen, K. Mifune, T. Konobe, I. Yoshida, A. Takamizawa, A unique mutation of glycoprotein gene of the attenuated RC-HL strain of rabies virus, a seed virus used for production of animal vaccine in Japan. Microbiol. Immunol. 38, 479–482 (1994)

  9. 9.

    Y. Kobayashi, G. Sato, M. Kato, T. Itou, E.M. Cunha, M.V. Silva, C.S. Mota, F.H. Ito, T. Sakai, Genetic diversity of bat rabies viruses in Brazil. Arch. Virol. 152, 1995–2004 (2007). doi:https://doi.org/10.1007/s00705-007-1033-y

  10. 10.

    M. Lafon, J. Ideler, W.H. Wunner, Investigation of the antigenic structure of rabies virus glycoprotein by monoclonal antibodies. Dev. Biol. Stand. 57, 219–225 (1984)

  11. 11.

    C. Langevin, H. Jaaro, S. Bressanelli, M. Fainzilber, C. Tuffereau, Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J. Biol. Chem. 277, 37655–37662 (2002). doi:https://doi.org/10.1074/jbc.M201374200

  12. 12.

    T.L. Lentz, T.G. Burrage, A.L. Smith, J. Crick, G.H. Tignor, Is the acetylcholine receptor a rabies virus receptor? Science 215, 182–184 (1982). doi:https://doi.org/10.1126/science.7053569

  13. 13.

    T.L. Lentz, P.T. Wilson, E. Hawrot, D.W. Speicher, Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science 226, 847–848 (1984). doi:https://doi.org/10.1126/science.6494916

  14. 14.

    K. Morimoto, J.P. McGettigan, H.D. Foley, D.C. Hooper, B. Dietzschold, M.J. Schnell, Genetic engineering of live rabies vaccines. Vaccine 19, 3543–3551 (2000). doi:https://doi.org/10.1016/S0264-410X(01)00064-0

  15. 15.

    S.A. Nadin-Davis, W. Huang, J. Armstrong, G.A. Casey, C. Bahloul, N. Tordo, A.I. Wandeler, Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada. Virus Res. 74, 139–156 (2001). doi:https://doi.org/10.1016/S0168-1702(00)00259-8

  16. 16.

    C. Prehaud, P. Coulon, F. LaFay, C. Thiers, A. Flamand, Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J. Virol. 62, 1–7 (1988)

  17. 17.

    G. Sato, T. Itou, Y. Shoji, Y. Miura, T. Mikami, M. Ito, I. Kurane, S.I. Samara, A.A. Carvalho, D.P. Nociti, F.H. Ito, T. Sakai, Genetic and phylogenetic analysis of glycoprotein of rabies virus isolated from several species in Brazil. J. Vet. Med. Sci. 66, 747–753 (2004). doi:https://doi.org/10.1292/jvms.66.747

  18. 18.

    I. Seif, P. Coulon, P.E. Rollin, A. Flamand, Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J. Virol. 53, 926–934 (1985)

  19. 19.

    S.H. Shakin-Eshleman, A.T. Remaley, J.R. Eshleman, W.H. Wunner, S.L. Spitalnik, N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J. Biol. Chem. 25, 10690–10698 (1992)

  20. 20.

    S.H. Shakin-Eshleman, W.H. Wunner, S.L. Spitalnik, Efficiency of N-linked core glycosylation at asparagine-319 of rabies virus glycoprotein is altered by deletions C-terminal to the glycosylation sequon. Biochemistry 32, 9465–9472 (1993). doi:https://doi.org/10.1021/bi00087a026

  21. 21.

    K. Shimizu, N. Ito, T. Mita, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, N. Minamoto, Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Res. 123, 154–160 (2007). doi:https://doi.org/10.1016/j.virusres.2006.08.011

  22. 22.

    M. Takayama-Ito, N. Ito, K. Yamada, M. Sugiyama, N. Minamoto, Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res. 115, 169–175 (2006). doi:https://doi.org/10.1016/j.virusres.2005.08.004

  23. 23.

    M.I. Thoulouze, M. Lafage, M. Schachner, U. Hartmann, H. Cremer, M. Lafon, The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998)

  24. 24.

    C. Tuffereau, H. Leblois, J. Bénéjean, P. Coulon, F. Lafay, A. Flamand, Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172, 206–212 (1989). doi:https://doi.org/10.1016/0042-6822(89)90122-0

  25. 25.

    C. Tuffereau, J. Bénéjean, D. Blondel, B. Kieffer, A. Flamand, Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J. 17, 7250–7259 (1998). doi:https://doi.org/10.1093/emboj/17.24.7250

  26. 26.

    T.J. Wiktor, E. Gyorgy, D. Schlumberger, F. Sokol, H. Koprowski, Antigenic properties of rabies virus components. J. Immunol. 110, 269–276 (1973)

  27. 27.

    K. Yamada, N. Ito, M. Takayama-Ito, M. Sugiyama, N. Minamoto, Multigenic relation to the attenuation of rabies virus. Microbiol. Immunol. 50, 25–32 (2006)

  28. 28.

    C. Yang, A.C. Jackson, Basis of neurovirulence of avirulent rabies virus variant Av01 with stereotaxic brain inoculation in mice. J. Gen. Virol. 73, 895–900 (1992). doi:https://doi.org/10.1099/0022-1317-73-4-895

Download references


This work was supported in part by a grant for Research on Emerging and Re-emerging Infectious Diseases, from the Ministry of Health, Labour and Welfare, Japan. Go Sato was supported by the Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists.

Author information

Correspondence to G. Sato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sato, G., Kobayashi, Y., Motizuki, N. et al. A unique substitution at position 333 on the glycoprotein of rabies virus street strains isolated from non-hematophagous bats in Brazil. Virus Genes 38, 74–79 (2009). https://doi.org/10.1007/s11262-008-0290-5

Download citation


  • Rabies virus
  • Glycoprotein
  • Non-haematophagous bat
  • Brazil