Advertisement

Virus Genes

, Volume 35, Issue 3, pp 729–735 | Cite as

Intra-genotypic resolution of African swine fever viruses from an East African domestic pig cycle: a combined p72-CVR approach

  • Baratang A. Lubisi
  • Armanda Duarte Slager Bastos
  • Rahana M. Dwarka
  • Wilna Vosloo
Original article

Abstract

Two of the 22 presently recognised African swine fever (ASF) virus p72 genotypes are genetically homogeneous and are associated with domestic pig cycles. Of these, genotype VIII comprises just two p72 variants, designated ‘a’ and ‘b’ in this study, and is confined to four East African countries where it has caused numerous outbreaks between 1961 and 2001. In order to resolve relationships within this homogeneous genotype, the central variable region (CVR) of the 9RL open reading frame of 38 viruses was characterised and the resulting dataset complemented with seven published sequences. Phylogenetic analysis of the 45 taxa resulted in seven discrete amino acid CVR lineages (A–G). CVR lineage F, 84 amino acids in length and spanning a 40-year period, comprised 26 isolates from Malawi, Mozambique, Zambia and Zimbabwe. The second largest lineage (E), consisted of 10 viruses causing outbreaks over a 10-year period in Zambia, Malawi and Mozambique whilst the remaining five lineages were country-specific and represented by four or less viruses with a maximum circulation period of three years. A combined p72-CVR analysis resulted in eight discrete lineages corresponding to eight unique p72-CVR combinations. One of these, b–F, appears to have arisen by convergent evolution or through an intra-genotypic recombination event, as the individual p72 and CVR gene phylogenies are incongruent. This raises the possibility of intra-genotypic recombination in ASF viruses for the first time. However, given the repetitive nature of the CVR region, convergent evolution cannot be excluded and may be the more likely explanation.

Keywords

African swine fever Central variable region p72 genotype VIII Convergent evolution Intra-genotypic recombination 

Notes

Acknowledgements

We would like to express our sincere gratitude to Dr. Comfort Phiri and the late Mr. Simon Mokuwe (both of formerly of OVI-EDD) for information on outbreak viruses and laboratory assistance, respectively, and the Red Meat Research and Development Trust of South Africa for funding.

References

  1. 1.
    L.K. Dixon, J.M. Escribano, C. Martins, D.L. Rock, M.L. Salas, P.J. Wilkinson, in Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (Elsevier/Academic Press, London, 2005) pp. 135–143Google Scholar
  2. 2.
    M.-L. Penrith, G.R. Thomson, A.D.S. Bastos, in Infectious diseases of livestock, ed. By J.A.W. Coetzer, R.C. Tustin. (Oxford University Press, Cape Town, 2004) pp. 1087–1119Google Scholar
  3. 3.
    M.L. Penrith, C. Lopes Pereira, M.M.R. Lopes da Silva, C. Quembo, A. Nhamusso, J.B.J. Onderstepoort, J. Vet. Res. 2007 (in press)Google Scholar
  4. 4.
    B.A. Lubisi, A.D.S. Bastos, R. Dwarka, W. Vosloo, Arch. Virol. 150, 2439 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    K.J. Sumption, G.H. Hutchings, P.J. Wilkinson, L.K. Dixon, J. Gen. Virol. 71, 2331 (1990)PubMedCrossRefGoogle Scholar
  6. 6.
    P.M. Irusta, M.V. Borca, G.F. Kutish, Z. Lu, E. Caler, C. Carrillo, D. Rock, Virology 220, 20 (1996)PubMedCrossRefGoogle Scholar
  7. 7.
    R.J. Yáñez, J.M. Rodríguez, M.L. Nogal, L. Yuste, C. Enríquez, H.F. Rodriguez, E. Viñuela, Virology 208, 249 (1995)PubMedCrossRefGoogle Scholar
  8. 8.
    R.J. Nix, C. Gallardo, G. Hutchings, E. Blanco, L.K. Dixon, Arch. Virol. 2006 (in press)Google Scholar
  9. 9.
    A.D.S. Bastos, M.-L. Penrith, F. Macome, F. Pinto, G.R. Thomson, Vet. Micro. 103, 169 (2004)CrossRefGoogle Scholar
  10. 10.
    S.B. Phologane, A.D.S. Bastos, M.-L. Penrith, Virus Genes 31, 357 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    C.I. Boshoff, A.D.S. Bastos, L. Gerber, W. Vosloo, Vet. Microbiol. 2007 (in press)Google Scholar
  12. 12.
    A.D.S. Bastos, M.-L. Penrith, C. Crucière, J. Edrich, G. Hutchings, F. Roger, E. Couacy-Hymann, G.R. Thomson, Arch. Virol. 148, 693 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    C. McCarthy, Chromas 1.43, School of Biomolecular and Biomedical Science, Faculty of Science and Technology, Griffith University, Brisbane, Queensland, Australia (1996)Google Scholar
  14. 14.
    E.H. Harley, DAPSA, DNA and protein sequence analysis. version 4.91 (Department of Chemical Pathology, University of Cape Town, 2001)Google Scholar
  15. 15.
    M.P. Simmons, H. Ochoterena, Syst. Biol. 49, 369 (2000)PubMedCrossRefGoogle Scholar
  16. 16.
    D.L. Swofford, PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4.10 (Sinauer Associates, MA, USA Inc., 2003) Google Scholar
  17. 17.
    J.S. Farris, M. Källersjö, A.G. Kluge, C. Bult, Cladistics 10, 315 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Baratang A. Lubisi
    • 1
    • 2
  • Armanda Duarte Slager Bastos
    • 2
  • Rahana M. Dwarka
    • 1
  • Wilna Vosloo
    • 1
    • 3
  1. 1.ARC-Onderstepoort Veterinary InstituteExotic Diseases DivisionOnderstepoort South Africa
  2. 2.Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Veterinary Tropical DiseasesUniversity of PretoriaOnderstepoortSouth Africa

Personalised recommendations