Virus Genes

, Volume 30, Issue 2, pp 251–266 | Cite as

CpG ODNs Treatments of HIV-1 Infected Patients May Cause the Decline of Transmission in High Risk Populations – A Review, Hypothesis and Implications

Article

Abstract

The Joint United Nations Program on HIV-1/AIDS (UNAIDS) announced its goal to stop HIV-1 transmission by antiviral (HAART) treatment of patients since at the end of 2003 the number of people living with HIV-1 was 38 million, 25 million in the sub-Saharan region of Africa. The present review deals with a new approach to simultaneously treat HIV-1/AIDS patients in HIV-1 endemic regions with CpG oligodeoxynucleotides (ODNs) and people at high risk of infection with a vaccine containing CpG ODNs combined with synthetic HIV-1 peptides by intranasal and intradermal applications.

During HIV-1 infection a gradual increase in the levels of IL-4 and IgE in the patients’ serum, was reported. It was suggested that such an increase of the cytokine IL-4 and the IgE immunoglobulin are interconnected and may serve as indicators for the coming stage of AIDS. It was also suggested that the IL-4 and IgE increase in the serum of HIV-1 infected people resemble the increase of IL-4 and IgE levels in allergic patients that were exposed to endogenous or environmental allergens [Becker, Virus Genes 28, 5--18, 2004]. Indeed, it was reported that the HIV-1 virions’ shed gp120 molecules, which contain a superantigen (superallergen) domain that enables the viral glycoprotein to bind the VH3 domain of IgE molecules that are bound to FcεRI+ hematopoietic cells [basophils, mast cells, dendritic cells (DCs) and plasmacytoid DCs (pDCs)]. Such interaction was reported to induce the hematopoietic cells to release large amounts of Th2 cytokines IL-4, IL-5, IL-10 and IL-13. These findings led to the hypothesis [Op. cit.] that the cure of HIV-1/AIDS patients requires the induction of endogenous synthesis of type I interferons (INF α and β) with a bacterial CpG rich DNA that will induce the patients’ pDCs to release large amounts of type I IFNs. Under these conditions HIV-1 replication in polarized to Th2 cells is inhibited. Type I IFNs reactivate the patients’ inhibited Th1 cells to synthesize IL-2 and IL-12 cytokines that activate the maturation of CTL precursors. The unmethylated bacterial DNA activates B synthesis to switch to IgG and IgA synthesis.

The novel drug CpG ODNs is being tested for the prevention and the treatment of allergic humans and in the experimental system of allergic mice. It was also reported that treatment of mice with CpG ODN prior to or after retrovirus infections protected and cured, respectively, the retrovirus infection. It was also reported that CpG ODNs treatments of mice exposed to allergen protected them against the development of the allergic response. Phase I treatment of healthy people with CpG ODNs provided information on the safety of these compounds. The CpG ODNs A and B bind to Toll like receptors that are present in pDCs and B cells, respectively, CpG ODN – A is the ligand for TLR9+ pDCs and induce the release of large amounts of IFN-α, β. CpG ODN-B is the ligand for TLR9+ in B cells and induce the synthesis of IgG and IgA. CpG ODN-C contains motifs from CpG ODNs A and B and is more active.

The present review is based on findings from studies that reported that CpG ODNs treatment of retrovirus infected mice, monkeys and allergic mice prevented the virus and allergens caused diseases, respectively. Based on these studies, a hypothesis is presented that treatment of HIV-1 infected and AIDS patients with CpG ODN-A and B or CpG ODN-C have the potential to inhibit IL-4 synthesis and release from FcɛRI+ hematopoietic cells by inducing TLR9+ pDCs to release large amounts of type I IFNs. TLR9+ B cells are induced by CpG ODN-B to switch from IgE to IgG, IgA synthesis. In addition, type I IFNs (α, β) have the capacity to inhibit HIV-1 replication in polarized Th2 cells. Type I IFNs reactivate the patients’ Th1 cells to synthesize IL-2 and IL-12 cytokines, activators of the precursor cytotoxic T cells (CTLs), leading to the reactivation of the inhibited adaptive immune response. Antiviral CTLs have the ability to clear the virus infection.

The present novel approach to the treatment and of HIV-1/AIDS patients with CpG ODNs may prevent HIV-1 transmission and the AIDS pandemic if controlled studies on the treatments with CpG ODNs of HIV-1 infected people will be done by international and private agencies and companies to define the effective treatment regime and the efficacy of the treatments to HIV-1 infected people at different times post-infection. It is also hypothesized that in order to stop HIV-1 transmission in HIV-1 endemic regions the people at high risk of HIV-1 infection should be treated at the same time as HIV-1 infected people with a vaccine containing synthetic CpG-ODNs combined with synthetic HIV-1 peptides, compatible with the major HLA haplotypes of the regional population. The vaccine may be self-applied by people at high risk of infection by the intra-nasal route and by intra-dermal application as a “peplotion vaccine”. The stimulation of the antiviral CTL response by HIV-1 infected people and the active antiviral immune response in the vaccinated population may lead to a decline in HIV-1 transmission and may be a model for control of the HIV-1/AIDS pandemic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The 2004 UNAIDS Report on the Global AIDS epidemic (6 July 2004).Google Scholar
  2. (No authors listed) Drugs R D 4, 249–253, 2003.Google Scholar
  3. Johnston, R. 2003AIDS Patients Care Std174751Google Scholar
  4. McElrath, M.Y., Corey, L., Greenberg, P.D., Mathews, T.J., Montefiori, D.C., Rowen, L., Hood, L., Mullis, J.I. 1996Proc Natl Acad Sci USA9339723979Google Scholar
  5. McMichael, A.J., Hanke, T. 2003Nature Med9874880Google Scholar
  6. Cohen, J. 2004Science30515451547Google Scholar
  7. Amann, A.Y., Abrams, D., Conant, M., Chudwin, D., Cowan, M., Volenberding, P., Lewis, B., Casavart, C. 1983Clin Immunol Immunopathol27315325Google Scholar
  8. Clerici, M., Shearer, G.M. 1993Immunol Today14107111Google Scholar
  9. Becker, Y. 2004Virus Genes28518Google Scholar
  10. Becker, Y. 2004Virus Genes28319331Google Scholar
  11. Mosmann, T.R., Chervinski, H., Bond, M.W. 1986J Immunol13623482357Google Scholar
  12. Mosmann, T.R., Coffman, R.L. 1989Annu Rev Immunol7143173Google Scholar
  13. Mosmann, T.R., Sad, S. 1996Immunol Today17138146Google Scholar
  14. Kidd, P. 2003Alternative Med Rev8223246Google Scholar
  15. Imami, N., Pires, A., Hardy, G. 2003J Virol7690119023Google Scholar
  16. Kelly-Welch, A.E., Hanson, E.M., Bothby, M.R., Keegan, A.D. 2003Science30015271528Google Scholar
  17. Rothenfusser, S., Tuma, E., Enders, S., Hartmann, G. 2002Hum Immunol6311111119Google Scholar
  18. Leifer, C.A., Kennedy, M.N., Mazzoni, A., Lee, C., Kruhlak, M.J., Segal, D.M. 2004J Immunol17311791183Google Scholar
  19. Reis e Sousa, C. 2004Semin Immunol162734Google Scholar
  20. Becker, Y. 2004Virus Genes29147165Google Scholar
  21. Takeshita, F., Gursel, I., Ishii, K.J., Suzuki, K., Gursel, M., Klinman, D.M. 2004Semin Immunol161722Google Scholar
  22. Krug, A., Towarowski, A., Britsch, S., Rothenfusser, S., Hornung, V., Bals, R.,  et al. 2001Eur J Immunol3130263037Google Scholar
  23. Krug, A., Rothenfusser, S., Hornung, V., Jahrsdörfer, B., Blackwell, S.,  et al. 2001Eur J Immunol3121542163Google Scholar
  24. Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., Liu, Y.-J. 1999Science28418351837PubMedGoogle Scholar
  25. Akira, S. 2004Semin Immunol16167Google Scholar
  26. Werling, D., Jungi, T.W. 2003Vet Immunol Immunopathol91112Google Scholar
  27. Shoda, L.K., Kegerries, K.A., Suarez, C.E., Mwangi, W., Knowles, D.P., Brown, W.C. 2001J Leukoc Biol70103112Google Scholar
  28. Bauer, S., Kirschning, C., Häcker, H., Redecke, V., Hansmann, S., Akira, S., Wagner, H., Lipford, G.B. 2001Proc Natl Acad Sci USA9892379242Google Scholar
  29. Hendrich, B., Bird, A. 1998Mol Cell Biol1865386547Google Scholar
  30. Wagner, H. 2004Trends Immunol25381386PubMedGoogle Scholar
  31. Kato, A., Homma, T., Batchelor, J., Hashimoto, N., Imai, S., Wakiguchi, H., Saito, H., Matsumoto, K. 2003BMC Immunol4817Google Scholar
  32. Hartmann, G., Battiany, J., Poeck, H., Wagner, M., Kerkmann, M.,  et al. 2003Eur J Immunol3316331641Google Scholar
  33. Marshall, J.D., Fearon, K., Abbate, C., Subramamian, S., Yee, P., Gregorio, J., Coffman, R.L., Nest, G. 2003J Leukoc Biol73781792Google Scholar
  34. Vallmer, J., Weematna, R., Payette, P., Jenk, M., Schetter, C., Laucht, M.,  et al. 2004Eur J Immunol34251262Google Scholar
  35. Kandimalla, E.R., Bhagat, L., Zhu, F.-G., Yu, D., Cong, Y.-P., Wang, D.,  et al. 2003Proc Natl Acad Sci USA1001430314308Google Scholar
  36. Klinman, D.M., Currie, D. 2003Clin Exp Immunol133227232Google Scholar
  37. Platz, J., Beisswenger, C., Dalpke, A., Koczulla, R., Pinkenburg, O., Vogelmeier, C., Bals, R. 2004J Immunol17312191223Google Scholar
  38. Weiner, G.J. 2000J Leukoc Biol68455463Google Scholar
  39. Chu, R.S., Targoni, O.S., Krieg, A.M., Lehmann, P.V., Harding, C.V. 1997J Exp Med18616231631Google Scholar
  40. Kline, J.N., Waldschmidt, T.J., Businga, T.R., Lemish, J.E., Weinstock, J.V., Thorne, P.S., Krieg, A.M. 1998J Immunol16025552559Google Scholar
  41. Homer, A.A., Widhopf, G.F., Burger, J.A., Takabayashi, K., Cinman, N., Ronaghy, A., Spiegelberg, H.L., Raz, E. 2001J Allergy Clin Immunol108417423Google Scholar
  42. So, E.-Y., Park, H.-H., Lee, C.-E. 2000J Immunol16554725479Google Scholar
  43. Lewis, D.B. 2002Curr Opin Immunol14644651Google Scholar
  44. Verthelyi, D., Ishii, K., Gursel, M., Takeshita, F., Klinman, D. 2001J Immunol16623722377Google Scholar
  45. Verthelyi, D., Klinman, D.M. 2003Clin Immunol1096471Google Scholar
  46. Tighe, H., Takabayashi, K., Schwartz, D., Nest, G., Tuck, S., Eiden, J.J.,  et al. 2000J Allergy Clin Immunol106124134Google Scholar
  47. Homer, A.A., Uden, J.H., Zubeldia, J.M., Broide, D., Raz, E. 2001Immunol Rev179102118Google Scholar
  48. Jain, V.V., Businga, T.R., Kitagaki, K., George, C.L., O’Shaughnessy, P.T., Kline, J.N. 2003Am J Physiol Lung Cell Mol Physiol285L1137L1146Google Scholar
  49. Takabayashi, K., Libet, L., Chisholm, D., Zubeldia, J., Hommer, A.A. 2003J Immunol17038983905Google Scholar
  50. Cafaro, A., Titti, F., Fracasso, C., Maggiorella, M.T., Baroncelli, S., Caputo, A.,  et al. 2001Vaccine1928622877Google Scholar
  51. Kojima, Y., Xin, K.-Q., Ooki, T., Hamajima, K., Oikawa, T., Shinoda, K.,  et al. 2002Vaccine2028572865Google Scholar
  52. Teleshova, N., Kenny, J., Jones, J., Marshall, J., Nest, G., Dufowr, J,  et al. 2004J Immunol17316471657Google Scholar
  53. Klinman, D.M. 2004Nat Rev4110CrossRefPubMedGoogle Scholar
  54. Horner, A.D., Raz, E. 2002J Allergy Clin Immunol110706712Google Scholar
  55. Olbrich, A.R.M., Schimmer, S., Heeg, K., Schepers, K., Schumacher, T.N.M., Dittmer, U. 2002J Virol761139711404Google Scholar
  56. Olbrich, A.R.M., Schimmer, S., Dittmer, U. 2003J Virol771065810662Google Scholar
  57. Dittmer, U., Olbrich, A.R.M. 2003Curr Opin Microbiol6472477Google Scholar
  58. Verthelyi, D., Gursel, M., Kenney, R.T., Lifson, J.D., Liu, S., Mican, J., Klinman, D.M. 2003J Immunol17047174723Google Scholar
  59. Loré, K., Betts, M.R., Brenchly, J.M., Kuruppu, J., Khojasteh, S.,  et al. 2003J Immunol17143204328Google Scholar
  60. Dumais, N., Patrick, A., Moss, R.B., Davis, H.L., Rosenthal, K.L. 2002J Infect Dis18610981105Google Scholar
  61. Yu, H., Babiuk, L.A., Hurk, S., Van, D. 2004J Gen Virol8515331543Google Scholar
  62. Halperin, S.A., Nest, G., Smith, B., Abtahi, S., Whiley, H., Eiden, J.J. 2003Vaccine2124612467Google Scholar
  63. Verthelyi, D., Wang, V.W., Lifson, Y.D., Klinman, D.M. 2004AIDS1810031008Google Scholar
  64. Sabin, A.B. 1992Proc Natl Acad Sci USA8988528855Google Scholar
  65. Scheller, C., Ulrich, A., McPherson, K., Hefele, B., Knöferle, J., Lamla, S.,  et al. 2004J Biol Chem2792189721902Google Scholar
  66. Jiang Z.H. and Koganty R.R., Curr Med Chem 10, 1423–1439.Google Scholar
  67. Dem, L., Schrimbeck, R., Reimann, J., Wolf, H., Wagner, R. 1999Clin Chem Lab Med37199204Google Scholar
  68. Daftarian, P., Ali, S., Sharan, R., Lacey, S.F., La Rosa, C., Longmate, J.,  et al. 2003J Imunol17140284039Google Scholar
  69. Becker, Y. 1995Virus Genes10227237Google Scholar
  70. Becker, Y. 1996Adv Exp Med Biol39797104Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Molecular Virology, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations