Veterinary Research Communications

, Volume 43, Issue 1, pp 7–16 | Cite as

Stem cells on regenerative and reproductive science in domestic animals

  • Naira Caroline Godoy Pieri
  • Aline Fernanda de Souza
  • Ramon Cesar Botigelli
  • Lucas Simões Machado
  • Carlos Eduardo Ambrosio
  • Daniele dos Santos Martins
  • André Furugen Cesar de Andrade
  • Flavio Vieira Meirelles
  • Poul Hyttel
  • Fabiana Fernandes BressanEmail author
Review Article


Stem cells are undifferentiated and self-renewable cells that present new possibilities for both regenerative medicine and the understanding of early mammalian development. Adult multipotent stem cells are already widely used worldwide in human and veterinary medicine, and their therapeutic signalling, particularly with respect to immunomodulation, and their trophic properties have been intensively studied. The derivation of embryonic stem cells (ESCs) from domestic species, however, has been challenging, and the poor results do not reflect the successes obtained in mouse and human experiments. More recently, the generation of induced pluripotent stem cells (iPSCs) via the forced expression of specific transcription factors has been demonstrated in domestic species and has introduced new potentials in regenerative medicine and reproductive science based upon the ability of these cells to differentiate into a variety of cells types in vitro. For example, iPSCs have been differentiated into primordial germ-like cells (PGC-like cells, PGCLs) and functional gametes in mice. The possibility of using iPSCs from domestic species for this purpose would contribute significantly to reproductive technologies, offering unprecedented opportunities to restore fertility, to preserve endangered species and to generate transgenic animals for biomedical applications. Therefore, this review aims to provide an updated overview of adult multipotent stem cells and to discuss new possibilities introduced by the generation of iPSCs in domestic animals, highlighting the possibility of generating gametes in vitro via PGCL induction.


iPSCs Cellular therapy Induced reprogramming Domestic animals 



The authors acknowledge CAPES and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for grants 2012/01060–4, 2013/09392–9, 2013/08135–2 and 2015/26818–5.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B (2017) Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 59:87–95. CrossRefPubMedGoogle Scholar
  2. Ambrosio C, Vidane A, Souza A et al (2014) Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cells Cloning Adv Appl 7:71. CrossRefGoogle Scholar
  3. Aponte PM (2015) Spermatogonial stem cells: current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells. 7(4):669–680. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avivi I, Rowe JM, Goldstone AH (2002) Stem cell transplantation in adult ALL patients. Best Pract Res Clin Haematol 15(4):653–674 Accessed January 15, 2018CrossRefGoogle Scholar
  5. Baird A, Barsby T, Guest D (2015) Derivation of canine induced pluripotent stem cells. Reprod Domest Anim 50(4):669–676. CrossRefPubMedGoogle Scholar
  6. Bao L, He L, Chen J et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21(4):600–608. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barberini D, Freitas NP, Magnoni M et al (2014) Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 5(1):25. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berg DK, Smith CS, Pearton DJ et al (2011) Trophectoderm lineage determination in cattle. Dev Cell 20(2):244–255. CrossRefPubMedGoogle Scholar
  9. Birbrair A, Borges I (2017) da T, Gilson Sena IF, et al. how plastic are Pericytes? Stem Cells Dev 26(14):1013–1019. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Black LL, Gaynor J, Gahring D et al (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8(4):272–284 Accessed January 8, 2018PubMedGoogle Scholar
  12. Bogliotti YS, Wu J, Vilarino M et al (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci 115(9):2090–2095. CrossRefPubMedGoogle Scholar
  13. Bressan FF, De Bem THC, Perecin F et al (2009) Unearthing the roles of imprinted genes in the placenta. Placenta 30:823–834. CrossRefPubMedGoogle Scholar
  14. Brevini T, Antonini S, Pennarossa G, Gandolfi F (2008) Recent Progress in embryonic stem cell research and its application in domestic species. Reprod Domest Anim 43:193–199. CrossRefPubMedGoogle Scholar
  15. Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science (80- ) 296(5576):2174–2176. CrossRefGoogle Scholar
  16. Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307 Accessed January 15, 2018CrossRefGoogle Scholar
  17. Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91(24):11298–11302 Accessed January 15, 2018CrossRefGoogle Scholar
  18. Cabezas J, Lara E, Pacha P et al (2014) The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod Domest Anim 49(4):550–559. CrossRefPubMedGoogle Scholar
  19. Cabezas J, Rojas D, Navarrete F et al (2018) Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology 106:93–102. CrossRefPubMedGoogle Scholar
  20. Canizo JR, Vazquez Echegaray C, Klisch D et al (2018) Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system. BMC Res Notes 11:509. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cao H, Yang P, Pu Y et al (2012) Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 8(4):498–511. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Caplan AI (2008) All MSCs are Pericytes? Cell Stem Cell 3(3):229–230. CrossRefPubMedGoogle Scholar
  23. Caplan AI (2015) Adult mesenchymal stem cells and women’s health. Menopause 22(2):131–135. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cardoso M, Pinheiro A, Vidane A et al (2017) Characterization of teratogenic potential and gene expression in canine and feline amniotic membrane-derived stem cells. Reprod Domest Anim 52:58–64. CrossRefPubMedGoogle Scholar
  25. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci 97(17):9585–9590. CrossRefPubMedGoogle Scholar
  26. Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG (2011) Adipose-derived stem cells for wound healing applications. Ann Plast Surg 66(2):210–215. CrossRefPubMedGoogle Scholar
  27. Clark AT, Bodnar MS, Fox M et al (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 13(7):727–739. CrossRefPubMedGoogle Scholar
  28. Crovace A, Favia A, Lacitignola L, Di Comite MS, Staffieri F, Francioso E (2008) Use of autologous bone marrow mononuclear cells and cultured bone marrow stromal cells in dogs with orthopaedic lesions. Vet Res Commun 32(S1):39–44. CrossRefGoogle Scholar
  29. Cyranoski D (2013) Stem cells boom in vet clinics. Nature 496(7444):148–149. CrossRefPubMedGoogle Scholar
  30. da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213. CrossRefGoogle Scholar
  31. da Silva ML, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427. CrossRefGoogle Scholar
  32. de Barros FRO, Ianello M, Antnio J (2012) Spermatogonial stem cells and animal Transgenesis. In: Innovations in Biotechnology Intech.
  33. De Cesaris V, Grolli S, Bresciani C et al (2017) Isolation, proliferation and characterization of endometrial canine stem cells. Reprod Domest Anim 52(2):235–242. CrossRefPubMedGoogle Scholar
  34. de Souza LEB, Malta TM, Kashima Haddad S, Covas DT (2016) Mesenchymal stem cells and Pericytes: to what extent are they related? Stem Cells Dev 25(24):1843–1852. CrossRefPubMedGoogle Scholar
  35. Dobrinski I, Avarbock MR, Brinster RL (1999) Transplantation of germ cells from rabbits and dogs into mouse Testes1. Biol Reprod 61(5):1331–1339. CrossRefPubMedGoogle Scholar
  36. Du H, Taylor HS (2009) Stem cells and female reproduction. Reprod Sci 16(2):126–139. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Emmerson SJ, Gargett CE (2016) Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse. World J Stem Cells 8(5):202–215. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156. CrossRefGoogle Scholar
  39. Fang J, Wei Y, Lv C, Peng S, Zhao S, Hua J (2017) CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling. Sci Rep 7:43851. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Feitosa MLT, Sarmento CAP, Bocabello RZ et al (2017) Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cir Bras 32(7):540–549. CrossRefPubMedGoogle Scholar
  41. Fortier LA, Travis AJ (2011) Stem cells in veterinary medicine. Stem Cell Res Ther 2(1):9. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247 Accessed January 7, 2018CrossRefGoogle Scholar
  43. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403 Accessed January 8, 2018PubMedGoogle Scholar
  44. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92 Accessed January 8, 2018PubMedGoogle Scholar
  45. Friedenstein AJ, Afanasyev BV, Elstner EE, Zander AR (2009) Founder of the mesenchymal stem cell concept Maximow and Friedenstein. Cell Ther Transplant 11(3).
  46. Fujishiro S, Nakano K, Mizukami Y et al (2013) Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 22(3):473–482.
  47. Gargett CE, Chan RWS, Schwab KE. (2007) Endometrial Stem Cells. Vol 19. Lippincott Williams & Wilkins. Accessed August 4, 2018
  48. Gargett CE, Schwab KE, Deane JA (2015) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22(2):dmv051. CrossRefGoogle Scholar
  49. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427(6970):148–154. CrossRefPubMedGoogle Scholar
  50. Ghobadi F, Mehrabani D, Mehrabani G (2015) Regenerative potential of endometrial stem cells: a mini review. World J Plast Surg 4(1):3–8 Accessed August 4, 2018PubMedPubMedCentralGoogle Scholar
  51. Ghobadi F, Rahmanifar F, Mehrabani D et al (2018) Endometrial mesenchymal stem stromal cells in mature and immature sheep: An in vitro study. Int J Reprod Biomed (Yazd, Iran) 16(2):83–92 Accessed August 4, 2018CrossRefGoogle Scholar
  52. Goncalves NJN, Bressan FF, Roballo KCS et al (2017) Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology 92:75–82. CrossRefPubMedGoogle Scholar
  53. Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ (December 2018) In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod.
  54. Harkey MA, Asano A, Zoulas ME, Torok-Storb B, Nagashima J, Travis A (2013) Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line. Reproduction 146(1):75–90. CrossRefPubMedGoogle Scholar
  55. Hasiwa N, Bailey J, Clausing P et al (2011) Critical evaluation of the use of dogs in biomedical research and testing in Europe. ALTEX 28(4):326–340 Accessed January 15, 2018CrossRefGoogle Scholar
  56. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532. CrossRefPubMedGoogle Scholar
  57. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338(6109):971–975. CrossRefPubMedGoogle Scholar
  58. Hikabe O, Hamazaki N, Nagamatsu G et al (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303. CrossRefPubMedGoogle Scholar
  59. Huang Y, Osorno R, Tsakiridis A, Wilson V (2012) In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep 2(6):1571–1578. CrossRefPubMedGoogle Scholar
  60. Hübner K, Fuhrmann G, Christenson LK et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300(5623):1251–1256. CrossRefPubMedGoogle Scholar
  61. Hyttel P, Sinowatz F, Vejlsted M, Betteridge, K. (2010) Essentials of Domestic Animal Embryology. Saunders/ElsevierGoogle Scholar
  62. Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9(10):642–647. CrossRefPubMedGoogle Scholar
  63. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462(7270):222–225. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ (2008) Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 136(6):823–831. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kim J-H, Jung M, Kim H-S, Kim Y-M, Choi E-H (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20(5):383–387. CrossRefPubMedGoogle Scholar
  66. Koh S, Piedrahita JA (2015) Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts. Methods Mol Biol 1330:69–78. CrossRefPubMedGoogle Scholar
  67. Koh S, Tsai S, Bischoff S, Olby N, Piedrahita J (2011) Generation of putative induced pluripotent Stem cells (iPS) from adult canine fibroblast. Biol Reprod 85(Suppl_1):783–783. CrossRefGoogle Scholar
  68. Kurukuti S, Tiwari VK, Tavoosidana G et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103(28):10684–10689. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kuzmuk KN, (n.d.) Schook LB Pigs as a model for biomedical sciences. In: The Genetics of the Pig. CABI, Wallingford, pp 426–444.
  70. Lara E, Rivera N, Rojas D, Rodríguez-Alvarez L, Castro F (2017) Characterization of mesenchymal stem cells in bovine endometrium during follicular phase of oestrous cycle. Reprod Domest Anim 52(5):707–714. CrossRefPubMedGoogle Scholar
  71. Lessa TB, Carvalho RC, Rezende Franciolli AL et al (2012) Muscle reorganisation through local injection of stem cells in the diaphragm of mdx mice. Acta Vet Scand 54:73. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Li Y, Cang M, Lee AS, Zhang K, Liu D (2011) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. Kaufman D, ed. PLoS One 6(1):e15947. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Luo J, Suhr S, Chang EA et al (2011a) Generation of LIF and bFGF-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev 20(10):1–53. CrossRefGoogle Scholar
  74. Luo J, Suhr ST, Chang EA et al (2011b) Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev 20(10):1669–1678. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Maia L, Landim-Alvarenga FC, Da Mota LSLS et al (2013) Immunophenotypic, immunocytochemistry, ultrastructural, and cytogenetic characterization of mesenchymal stem cells from equine bone marrow. Microsc Res Tech 76(6):618–624. CrossRefPubMedGoogle Scholar
  76. Mann MRW, Bartolomei MS. Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol. 2002;3(2):REVIEWS1003. Accessed January 15, 2018
  77. McLaren A, Southee D (1997) Entry of mouse embryonic germ cells into meiosis. Dev Biol 187(1):107–113. CrossRefPubMedGoogle Scholar
  78. Meirelles F, Caetano A, Watanabe Y et al (2004) Genome activation and developmental block in bovine embryos. Anim Reprod Sci 82–83:13–20. CrossRefPubMedGoogle Scholar
  79. Miao C, Lei M, Hu W, Han S, Wang Q (2017) A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 8(1):242. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Muñoz M, Rodríguez A, De Frutos C et al (2008) Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69(9):1159–1164. CrossRefPubMedGoogle Scholar
  81. Nagy K, Sung H-K, Zhang P et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev Reports 7(3):693–702. CrossRefGoogle Scholar
  82. Nayernia K, Nolte J, Michelmann HW et al (2006) In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 11(1):125–132. CrossRefPubMedGoogle Scholar
  83. Nelakanti RV, Kooreman NG, Wu JC (2015) Teratoma formation: a tool for monitoring pluripotency in stem cell research. Curr Protoc Stem Cell Biol 32:4A.8.1–4A.817. CrossRefGoogle Scholar
  84. Neupane M, Chang C-C, Kiupel M, Yuzbasiyan-Gurkan V (2008) Isolation and characterization of canine adipose–derived mesenchymal stem cells. Tissue Eng Part A 0(0):080422095744451. CrossRefGoogle Scholar
  85. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Nishimura T, Hatoya S, Kanegi R et al (2017) Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions. Mol Reprod Dev 84(4):329–339. CrossRefPubMedGoogle Scholar
  87. Nowak-Imialek M, Kues W, Carnwath JW, Niemann H (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal 17(04):474–497. CrossRefPubMedGoogle Scholar
  88. O DF, Roskams T, Van den Eynde K et al (2017) The presence of endometrial cells in peritoneal fluid of women with and without endometriosis. Reprod Sci 24(2):242–251. CrossRefPubMedGoogle Scholar
  89. Ohsaki H, Sawa T, Sasazaki S et al (2007) Stearoyl-CoA desaturase mRNA expression during bovine adipocyte differentiation in primary culture derived from Japanese Black and Holstein cattle. Comp Biochem Physiol A Mol Integr Physiol 148(3):629–634. CrossRefPubMedGoogle Scholar
  90. Oliveira VC, Mançanares CAF, Oliveira LJ et al (2017) Characterization of putative haematopoietic cells from bovine yolk sac. J Tissue Eng Regen Med 11(4):1132–1140. CrossRefPubMedGoogle Scholar
  91. Panula S, Medrano JV, Kee K et al (2010) Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet 20(4):752–762. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Park TS, Galic Z, Conway AE et al (2009) Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by Coculture with human fetal gonadal cells. Stem Cells 27(4):783–795. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pelosi E, Forabosco A, Schlessinger D (2011) Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes. Ann N Y Acad Sci 1221(1):18–26. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Picanço-Castro V, Russo-Carbolante E, Reis LCJ et al (2011) Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev 20(1):169–180. CrossRefPubMedGoogle Scholar
  95. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science (80- ) 293(5532):1089–1093. CrossRefGoogle Scholar
  96. Rink BE, Beyer T, French HM, Watson E, Aurich C, Donadeu FX (2018) The fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus. Stem Cells Dev 27(15):1046–1052. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rossant J (2008) Stem cells and early lineage development. Cell 132(4):527–531. CrossRefPubMedGoogle Scholar
  98. Russell KA, Chow NHC, Dukoff D et al (2016) Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. Kerkis I, ed. PLoS One 11(12):e0167442. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sampaio RV, Chiaratti MR, Santos DCN et al (2015) Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res 14:53–62. CrossRefPubMedGoogle Scholar
  100. Schneider MR, Wolf E, Braun J, Kolb H-J, Adler H (2008) Canine embryo-derived stem cells and models for human diseases. Hum Mol Genet 17(R1):R42–R47. CrossRefPubMedGoogle Scholar
  101. Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T (2009) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77(1):2–2. CrossRefGoogle Scholar
  102. Singh R, Kuai D, Guziewicz KE et al (2015) Pharmacological modulation of photoreceptor outer segment degradation in a human iPS cell model of inherited macular degeneration. Mol Ther 23(11):1700–1711. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Song H, Li H, Huang M et al (2013) Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 80(12):1009–1017. CrossRefPubMedGoogle Scholar
  104. Starkey MP, Scase TJ, Mellersh CS, Murphy S (2005) Dogs really are man’s best friend--canine genomics has applications in veterinary and human medicine! Brief Funct Genomic Proteomic 4(2):112–128 Accessed January 15, 2018CrossRefGoogle Scholar
  105. Subbarao RB, Shivakumar SB, Choe Y-H et al (July 2018) CD105 + porcine endometrial stromal mesenchymal stem cells possess differentiation potential toward cardiomyocyte-like cells and insulin-producing β cell-like cells in vitro. Reprod Sci 193371911878646:193371911878646. CrossRefGoogle Scholar
  106. Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89(9):2708–2716. CrossRefPubMedGoogle Scholar
  107. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. CrossRefPubMedGoogle Scholar
  108. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. CrossRefPubMedGoogle Scholar
  109. Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9(11):1205–1216. CrossRefPubMedGoogle Scholar
  110. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147 Accessed January 10, 2018CrossRefGoogle Scholar
  111. Tiptanavattana N, Thongkittidilok C, Techakumphu M, Tharasanit T (2013) Characterization and in vitro culture of putative spermatogonial stem cells derived from feline testicular tissue. J Reprod Dev 59(2):189–195 Accessed January 15, 2018CrossRefGoogle Scholar
  112. Tosolini M, Jouneau A (2015) From naive to primed pluripotency: in vitro conversion of mouse embryonic stem cells in epiblast stem cells. Methods in Molecular Biology (Clifton, N.J.) 1341:209–216. CrossRefGoogle Scholar
  113. Travis AJ, Kim Y, Meyers-Wallen V (2009) Development of new stem cell-based technologies for carnivore reproduction research. Reprod Domest Anim 44(Suppl 2(Suppl 2)):22–28. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13(10):1387–1400. CrossRefPubMedGoogle Scholar
  115. van Steenbeek FG, Hytönen MK, Leegwater PAJ, Lohi H (2016) The canine era: the rise of a biomedical model. Anim Genet 47(5):519–527. CrossRefPubMedGoogle Scholar
  116. Vassena R, Eguizabal C, Heindryckx B et al (2015) Stem cells in reproductive medicine: ready for the patient?: figure 1. Hum Reprod 30(9):2014–2021. CrossRefPubMedGoogle Scholar
  117. Verdi J, Tan A, Shoae-Hassani A, Seifalian AM (2014) Endometrial stem cells in regenerative medicine. J Biol Eng 8(1):20. CrossRefPubMedPubMedCentralGoogle Scholar
  118. Verma R, Verma PJ (2014) Using stem cells to study and preserve biodiversity in endangered big cats. Humana Press, Cham:109–117.
  119. Verma R, Holland MK, Temple-Smith P, Verma PJ (2012) Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology 77(1):220–228.e2. CrossRefPubMedGoogle Scholar
  120. Verma R, Liu J, Holland MK, Temple-Smith P, Williamson M, Verma PJ (2013) Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids. Biores Open Access 2(1):72–76. CrossRefPubMedPubMedCentralGoogle Scholar
  121. Vidane A, Pinheiro A, Casals J, Passarelli D, Hage MCFNS, Bueno RS, Martins DS, Ambrósio CE (2017) Transplantation of amniotic membrane-derived multipotent cells ameliorates and delays the progression of chronic kidney disease in cats. Reprod Domest Anim 52:316–326. CrossRefPubMedGoogle Scholar
  122. Volk SW, Theoret C (2013) Translating stem cell therapies: the role of companion animals in regenerative medicine. Wound Repair Regen 21(3):382–394. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Voltarelli JC, Couri CEB, Oliveira MC et al (2011) Stem cell therapy for diabetes mellitus. Kidney Int Suppl 1(3):94–98. CrossRefGoogle Scholar
  124. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324. CrossRefPubMedGoogle Scholar
  125. Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PRJ, Wolvetang EJ (2014) Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 23(13):1515–1523. CrossRefPubMedPubMedCentralGoogle Scholar
  126. Xu X, Wang Y, Zhang B et al (2018) Treatment of experimental colitis by endometrial regenerative cells through regulation of B lymphocytes in mice. Stem Cell Res Ther 9(1):146. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yang J, Ryan DJ, Wang W et al (2017) Establishment of mouse expanded potential stem cells. Nature 550(7676):393–397. CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zhao J, Zhang Q, Wang Y, Li Y (2015) Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod Sci 22(2):181–188. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Naira Caroline Godoy Pieri
    • 1
  • Aline Fernanda de Souza
    • 2
  • Ramon Cesar Botigelli
    • 3
  • Lucas Simões Machado
    • 4
  • Carlos Eduardo Ambrosio
    • 2
  • Daniele dos Santos Martins
    • 2
  • André Furugen Cesar de Andrade
    • 1
  • Flavio Vieira Meirelles
    • 2
  • Poul Hyttel
    • 5
  • Fabiana Fernandes Bressan
    • 2
    Email author
  1. 1.Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Department of Veterinary Medicine, Faculty of Animal Sciences and Food EngineeringUniversity of São PauloPirassunungaBrazil
  3. 3.Department of Pharmacology, Institute of BiosciencesSão Paulo State UniversityBotucatuBrazil
  4. 4.Department of Surgery, Faculty of Veterinary Medicine and Animal SciencesUniversity of São PauloSão PauloBrazil
  5. 5.Department of Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations