Advertisement

Veterinary Research Communications

, Volume 43, Issue 2, pp 123–129 | Cite as

Quantification of EGFR family in canine mammary ductal carcinomas in situ: implications on the histological graduation

  • Emerson Soares Veloso
  • Ivy Nayra Nascimento Gonçalves
  • Jaqueline Amorim Arantes
  • Rafael Vitor Santos de Abreu
  • Geovanni Dantas Cassali
  • Enio FerreiraEmail author
Original Article

Abstract

The epithelial growth factor receptors are transmembrane proteins with an important role in the neoplastic progression of tumors, and in this context, DCIS is an important phase in the progression of canine mammary tumors. Studies on the molecular profile and its relationship to a progression of canine mammary tumors are important to improve the treatment of patients and for a better understanding of canine mammary carcinogenesis. The aim of this study was to determine, by immunohistochemistry, the relation between the expression of EGFR, ErbB-2, ErbB-3, and ErbB-4 in 52 canine mammary gland DCIS with high and low histological grade. A positive correlation between histological grade and expression of membrane ErbB-2 and cytoplasmic ErbB-4 was observed. Increased ErbB-4 membrane expression was correlated with increased ErbB-3 expression in low and high-grade DCIS. Our data suggest that increased expression of ErbB-2 and ErbB-4 may be related to more aggressive DCIS and probabily involved with canine mammary neoplastic progression.

Keywords

Cancer Dog Immunohistochemistry Histological grade EGFR 

Notes

Acknowledgments

The financial support for this study was provided by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

Compliance with ethical standards

Conflict of interest

The authors have no competing interests.

References

  1. Allegra CJ, Aberle DR, Ganschow P, Hahn SM, Lee CN, Millon-Underwood S, Pike MC, Reed SD, Saftlas AF, Scarvalone SA, Schwartz AM, Slomski C, Yothers G, Zon R (2010) National Institutes of Health state-of-the-science conference statement: diagnosis and management of ductal carcinoma in situ. J Natl Cancer Inst 102:161–169CrossRefGoogle Scholar
  2. Berghoff AS, Bartsch R, Preusser M, Ricken G, Steger GG, Bago-Horvath Z, Rudas M, Streubel B, Dubsky P, Gnant M, Fitzal F, Zielinski CC, Birner P (2014) Co-overexpression of HER2/HER3 is a predictor of impaired survival in breast cancer patients. Breast 23:637–643.  https://doi.org/10.1016/j.breast.2014.06.011 CrossRefGoogle Scholar
  3. Borg A, Tandon AK, Sigurdsson H, Clark GM, Fernö M, Fuqua SA, Killander D, McGuire W (1990) HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 50:4332–4337Google Scholar
  4. Carvalho MI, Guimarães MJ, Pires I, Prada J, Silva-Carvalho R, Lopes C, Queiroga FL (2013) EGFR and microvessel density in canine malignant mammary tumours. Res Vet Sci 95:1094–1099.  https://doi.org/10.1016/j.rvsc.2013.09.003 CrossRefGoogle Scholar
  5. Cassali GD, Lavalle GE, Ferreira E et al (2014) Consensus for the diagnosis, prognosis and treatment of canine mammary tumors - 2013. Brazilian J Vet Pathol 7:38–69Google Scholar
  6. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174.  https://doi.org/10.1056/NEJMra0707704 CrossRefGoogle Scholar
  7. Davis JE, Nemesure B, Mehmood S, Nayi V, Burke S, Brzostek SR, Singh M (2016) Her2 and Ki67 biomarkers predict recurrence of ductal carcinoma in situ. Appl Immunohistochem Mol Morphol 24:20–25.  https://doi.org/10.1097/PAI.0000000000000223 CrossRefGoogle Scholar
  8. Ellis IO, Schnitt SJ, Bussalati G, Tavassoli FA (2003) CHAPTER 1 WHO histological classification of Tumours of the breast. Pathol Genet Breast Female Genit OrgansGoogle Scholar
  9. Espina V, Liotta LA (2013) What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer 11:68–75.  https://doi.org/10.1038/nrc2950 CrossRefGoogle Scholar
  10. Esteva FJ, Hortobagyi GN (2004) Prognostic molecular markers in early breast cancer. Breast Cancer Res 6:109–118.  https://doi.org/10.1186/bcr777 CrossRefGoogle Scholar
  11. Ferreira E, Gobbi H, Saraiva BS, Cassali GD (2010) Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis. BMC Cancer 10:61.  https://doi.org/10.1186/1471-2407-10-61 CrossRefGoogle Scholar
  12. Fry WHD, Kotelawala L, Sweeney C, Carraway KL (2009) Mechanisms of ErbB receptor negative regulation and relevance in cancer. Exp Cell Res 315:697–706.  https://doi.org/10.1016/j.yexcr.2008.07.022 CrossRefGoogle Scholar
  13. Gama A, Gärtner F, Alves A, Schmitt F (2009) Immunohistochemical expression of epidermal growth factor receptor (EGFR) in canine mammary tissues. Res Vet Sci 87:432–437.  https://doi.org/10.1016/j.rvsc.2009.04.016 CrossRefGoogle Scholar
  14. Han S, Yun I-J, Noh D-Y, Choe KJ, Song SY, Chi JG (1997) Abnormal expression of four novel molecular markers represents a highly aggressive phenotype in breast cancer. Immunohistochemical assay of p53, nm23, erbb-2, and cathepsin D protein. J Surg Oncol 65:22–27.  https://doi.org/10.1002/(SICI)1096-9098(199705)65:1<22::AID-JSO5>3.0.CO;2-Q CrossRefGoogle Scholar
  15. Hollmén M, Liu P, Kurppa K, Wildiers H, Reinvall I, Vandorpe T, Smeets A, Deraedt K, Vahlberg T, Joensuu H, Leahy DJ, Schöffski P, Elenius K (2012) Proteolytic processing of ErbB4 in breast cancer. PLoS One 7:e39413.  https://doi.org/10.1371/journal.pone.0039413 CrossRefGoogle Scholar
  16. Howe LR, Brown PH (2011) Targeting the HER/EGFR/ErbB family to prevent breast cancer. Cancer Prev Res 4:1149–1157.  https://doi.org/10.1158/1940-6207.CAPR-11-0334 CrossRefGoogle Scholar
  17. Im KS, Kim I-H, Kim N-H, Lim HY, Kim JH, Sur JH (2013) Breed-related differences in altered BRCA1 expression, phenotype and subtype in malignant canine mammary tumors. Vet J 195:366–372.  https://doi.org/10.1016/j.tvjl.2012.07.014 CrossRefGoogle Scholar
  18. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Härkönen P, Joensuu H, Isola J, Elenius K (2005) Cleavable ErbB4 isoform in estrogen receptor − regulated growth of breast cancer cells. Cancer Res 65:1384–1393.  https://doi.org/10.1158/0008-5472.CAN-04-3150 CrossRefGoogle Scholar
  19. Kim JH, Im KS, Kim NH, Yhee JY, Nho WG, Sur JH (2011) Expression of HER-2 and nuclear localization of HER-3 protein in canine mammary tumors: histopathological and immunohistochemical study. Vet J 189:318–322.  https://doi.org/10.1016/j.tvjl.2010.08.012 CrossRefGoogle Scholar
  20. Koutras AK, Kalogeras KT, Dimopoulos M-A et al (2008) Evaluation of the prognostic and predictive value of HER family mRNA expression in high-risk early breast cancer: a Hellenic cooperative oncology group (HeCOG) study. Br J Cancer 99:1775–1785.  https://doi.org/10.1038/sj.Bjc.6604769 CrossRefGoogle Scholar
  21. Le Doussal V, Tubiana-Hulin M, Friedman S et al (1989) Prognostic value of histologic grade nuclear components of Scarff - bloom - Richardson (SBR) an improved score modification based on a multivariate analysis of 1262 lnvasive ductal breast carcinomas. Cancer 64:1914–1921.  https://doi.org/10.1002/1097-0142(19891101)64:9<1914::AID-CNCR2820640926>3.0.CO;2-G CrossRefGoogle Scholar
  22. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC (2012) Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 72:4574–4586.  https://doi.org/10.1158/0008-5472.CAN-12-0636 CrossRefGoogle Scholar
  23. Liu J, Kern JA (2002) Neuregulin-1 activates the JAK-STAT pathway and regulates lung epithelial cell proliferation. Am J Respir Cell Mol Biol 27:306–313.  https://doi.org/10.1165/rcmb.4850 CrossRefGoogle Scholar
  24. Marmor MD, Skaria KB, Yarden Y (2004) Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 58:903–913.  https://doi.org/10.1016/j.ijrobp.2003.06.002 CrossRefGoogle Scholar
  25. Misdorp W, Else RW, Hellmén E, Lipscomb TP (1999) Histological classification of mammary tumors of the dog and the cat 2nd series, vol VII, WashingtonGoogle Scholar
  26. Pinder SE, Ellis IO (2003) The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)--current definitions and classification. Breast Cancer Res 5:254–257.  https://doi.org/10.1186/bcr623 CrossRefGoogle Scholar
  27. Queiroga FL, Perez-Alenza MD, González-Gil A, Silván G, Peña L, Illera JC (2017) Quantification of epidermal growth factor receptor (EGFR) in canine mammary tumours by ELISA assay: clinical and prognostic implications. Vet Comp Oncol 15:383–390.  https://doi.org/10.1111/vco.12174 CrossRefGoogle Scholar
  28. Rampaul RS, Pinder SE, Wencyk PM et al (2004) Epidermal growth factor receptor status in operable invasive breast cancer: is it of any prognostic value? Clin Cancer Res 10:2578Google Scholar
  29. Rao NAS, Van Wolferen ME, Gracanin A et al (2009) Gene expression profiles of progestin-induced canine mammary hyperplasia and spontaneous mammary tumors. J Physiol Pharmacol 60:73–84Google Scholar
  30. Ribeiro GM, Bertagnolli AC, Rocha RM, Cassali GD (2012) Morphological aspects and immunophenotypic profiles of mammary carcinomas in benign-mixed tumors of female dogs. Vet Med Int 2012:7–7.  https://doi.org/10.1155/2012/432763 CrossRefGoogle Scholar
  31. Sartor CI, Zhou H, Kozlowska E, Guttridge K, Kawata E, Caskey L, Harrelson J, Hynes N, Ethier S, Calvo B, Earp HS (2001) HER4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol 21:4265–4275.  https://doi.org/10.1128/MCB.21.13.4265 CrossRefGoogle Scholar
  32. Sgroi DC (2010) Preinvasive breast cancer. Annu Rev Pathol 5:193–221.  https://doi.org/10.1146/annurev.pathol.4.110807.092306 CrossRefGoogle Scholar
  33. Siegel PM, Ryan ED, Cardiff RD, Muller WJ (1999) Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 18:2149–2164.  https://doi.org/10.1093/emboj/18.8.2149 CrossRefGoogle Scholar
  34. Silva ILD, Dias APM, Bertagnolli AC, Cassali GD, Ferreira E (2014) Analysis of EGFR and HER-2 expressions in ductal carcinomas in situ in canine mammary glands. Arq Bras Med Vet e Zootec 66:763–768.  https://doi.org/10.1590/1678-41626128 CrossRefGoogle Scholar
  35. Steinman S, Wang J, Bourne P et al (2007) Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann Clin Lab Sci 37:127–134Google Scholar
  36. Suo Z, Risberg B, Kalsson MG et al (2002) EGFR family expression in breast carcinomas. C-erbB-2 and c-erbB-4 receptors have different effects on survival. J Pathol 196:17–25.  https://doi.org/10.1002/path.1003 CrossRefGoogle Scholar
  37. Tang Q, Liu Y, Li T et al (2016) A novel co-drug of aspirin and ursolic acid interrupts adhesion, invasion and migration of cancer cells to vascular endothelium via regulating EMT and EGFR-mediated signaling pathways: multiple targets for cancer metastasis prevention and treatment. Oncotarget.  https://doi.org/10.18632/oncotarget.12232
  38. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137.  https://doi.org/10.1038/35052073 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Emerson Soares Veloso
    • 1
  • Ivy Nayra Nascimento Gonçalves
    • 1
  • Jaqueline Amorim Arantes
    • 1
  • Rafael Vitor Santos de Abreu
    • 1
  • Geovanni Dantas Cassali
    • 1
  • Enio Ferreira
    • 1
    Email author
  1. 1.Departamento de Patologia Geral, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations