Skip to main content
Log in

Molecular characterization and xenogenic application of wharton’s jelly derived caprine mesenchymal stem cells

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Aim of the present study was in vitro expansion and characterization of caprine wharton’s jelly derived mesenchymal stem cells (cWJ-MSCs) to investigate their tissue healing potential in xenogenic animal model. Plastic adherent fibroblastoid cell populations with distinctive homogeneous morphology were isolated from caprine wharton’s jelly explants. These wharton’s jelly derived cells were found positive for the surface markers CD-73, STRO-1 and CD-105, whereas they were negative for hematopoetic stem cell marker CD-34. In vitro cultured cWJ-MSCs also showed differentiation properties into osteogenic, adipogenic and chondrogenic lineages as demonstrated by von Kossa, Oil Red- O and Alcian blue staining respectively, which was further confirmed and quantified by flow cytometric analysis. Furthermore, these well characterized cWJ-MSCs were evaluated for the wound-healing potential in full-thickness skin wounds in rabbit model for 28 days. Caprine WJ- MSCs treated skin wounds showed significantly (P < 0.05) higher percentage of wound contraction especially at the 21st day post transplantation when compared to PBS treated control group animals. Further, we observed better healing potential of cWJ-MSCs in terms of histo-morphological evaluation, epithelialisation and collagenization with matured vascularization stage by day 28 as compared to control. In conclusion, cWJ- MSCs provide an alternative inexhaustible source of mesenchymal stem cells and also unravel new perspectives pertaining to the therapeutic use of these cells in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augello A, Tasso R, Negrini SM, Cancedda R, Pennes G (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Azari O, Babaei H, Derakhshanfar A, Nematollahi-Mahani SN, Poursahebi R, Moshrefi M (2011) Effects of transplanted mesenchymal stem cells isolated from Wharton’s jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Vet Res Commun 35:11–222

    Article  Google Scholar 

  • Babaei H, Moshrefi M, Golchin M, Nematollahi-Mahani SN (2008) Assess the pluripotency of caprine umbilical cord Wharton’s jelly mesenchymal cells by RT-PCR analysis of early transcription factor nanog. Iran J Vet Surg 3:57–65

    Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–84

    Article  CAS  PubMed  Google Scholar 

  • Borena BM, Pawde AM, Amarpal AHP, Kinjavdekar P, Singh R, Kumar D (2009) Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits. Vet Rec 165:563–568

    Article  CAS  PubMed  Google Scholar 

  • Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 11:2886–2896

    Article  Google Scholar 

  • Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R (2012) Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 12:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25:73–78

    Article  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:1886

    Article  Google Scholar 

  • Conconi MT, Burra P, Di LR (2006) CD105(_) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18:1089–1096

    CAS  PubMed  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stemcells: biology and potential clinical uses. Exp Hematol 28:875–84

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 4:315–317

    Article  Google Scholar 

  • Fong CY, Chak LL, Biswas A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Fu YS, Shih YT, Cheng YC (2004) Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 11:652–660

    Article  CAS  PubMed  Google Scholar 

  • Gade NE, Pratheesh MD, Nath A, Dubey PK, Amarpal, Sharma B, Saikumar G, Sharma GT (2013) Molecular and Cellular Characterization of Buffalo Bone Marrow Derived Mesenchymal Stem Cells. Reprod Domest Anim 48:358–67

  • Ghamsari SM, Acorda JA, Taguchi K, Abe N, Yamada H (1996) Evaluation of wound healing of the teat with and without low level laser therapy in dairy cattle by laser Doppler flowmetry in comparison with histopathology, tensiometry and hydroxyproline analysis. Br Vet J 152:583–592

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinnemo KH, Mansson A, Dellgren G, Klingberg D, Wardell E, Drvota V, Tammik C, Holgersson J, Ringdén O, Sylvén C, Le Blanc K (2004) Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infracted rat myocardium. J Thorac Cardiovasc Surg 127:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Harris DT (2008) Collection, Processing, and Banking of Umbilical Cord Blood Stem Cells for Clinical Use in Transplantation and Regenerative Medicine. Lab Medicine 39

  • Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival and stimulate angiogenesis. Stem Cells 25:2363–2370

    Article  CAS  PubMed  Google Scholar 

  • In't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL (2003) Mesenchymal stem cells in human secondtrimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–52

    Google Scholar 

  • Kang BJ, Ryu HH, Park SS, Koyama Y, Kikuchi M, Woo HM, Kim WH, Kweon OK (2012) Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J Vet Sci 13:299–310

    Article  PubMed Central  PubMed  Google Scholar 

  • Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Kubota T, Aso T (1998) Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dulchavsky DS, Gao X, Kwon D, Chopp M, Dulchavsky S, Gautam SC (2006) Wound repair by bone marrow stromal cells through growth factor production. J Surg Res 136:336–341

    Article  CAS  PubMed  Google Scholar 

  • Lund RD, Wang S, Lu B (2007) Cells isolated from umbilical cord tissuerescue photoreceptors and visual functions in a rodent model of retinaldisease. Stem Cells 25:602–611

    Article  CAS  PubMed  Google Scholar 

  • Masson PJ (1929) Some histological methods. Trichrome stainings and their preliminary technique. J Tech Methods 12:75–90

    Google Scholar 

  • McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14:471–478

    Article  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Bodine D, Leri A, Anversa P (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann NY Acad 938:221–29

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7

    Article  CAS  PubMed  Google Scholar 

  • Pratheesh MD, Gade NE, Katiyar AN, Dubey PK, Sharma B, Saikumar G, Amarpal, Sharma GT (2013) Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Vet Sci 94:313–9

  • Rao MS, Matton MP (2001) Stem cells and aging: expanding the possibilities. Mech Ageing Dev 122:713–34

    Article  CAS  PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li JL, Merfeld-clauss S, Temm-grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  • Robson MC (1991) Growth factors as wound healing agents. Curr Opin Biotechnol 2:863–7

    Article  CAS  PubMed  Google Scholar 

  • Ryu HH, Kang BJ, Park SS, Kim Y, Sung GJ, Woo HM, Kim WH, Kweon OK (2012) Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci 74:1617–30

    Article  CAS  PubMed  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  PubMed  Google Scholar 

  • Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, Pacheco-Silva A, Camara NO (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423

    Article  CAS  PubMed  Google Scholar 

  • Seo MS, Park SB, Kang KS (2012) Isolation and characterization of canine Wharton’s jelly-derived mesenchymal stem cells. Cell Transplant 21:1493–502

    Article  PubMed  Google Scholar 

  • Sharma GT, Dubey PK, Verma OP, Pratheesh MD, Amar Nath G, SaiKumar (2012) Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells. Biochem Biophys Res Commun 424:378–384

    Article  Google Scholar 

  • Sheehan D, Hrapchak B (1980) Theory and Practice of Histotechnology, 2nd edn. Battelle Press, Ohio, pp 226–227

    Google Scholar 

  • Singh J, Mann A, Kumar D, Duhan JS, Yadav PS (2013) Cultured buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells. In Vitro Cell Dev Biol Anim 49:408–16

    Article  CAS  PubMed  Google Scholar 

  • Tark KC, Hong JW, Kim YS, Hahn SB, Lee WJ, Lew DH (2010) Effects of human cord mesenchymal stem cells on cutaneous wound healing in leprdb mice. Ann Plast Surg 65:565–572

    Article  CAS  PubMed  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–97

    Article  CAS  PubMed  Google Scholar 

  • Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilicalmesenchymal stem cells from Whartons jelly after complete transection of the rat spinal cord. PLoS ONE 3:1–11

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Indian Council of Agricultural Research (ICAR) for providing necessary financial assistance.

Conflict of interest

None of the authors have any conflict of interest to declare.

Authors contribution

Dr. Pratheesh and Dr. Nitin Gade isolated and maintained mesenchymal stem cells and executed characterization. Mr. AmarNath and Dr. Pawan K Dubey were associated with protein localization experiments. Dr. Amarpal, Dr. Sivanarayanan and Dr. Madhu contributed in therapeutical experiment. Dr. Bhaskar Sharma provided facility of Fluorescent activated cell sorter. Dr. G Sai Kumar evaluated all the histological data for therapeutic evaluation and Dr. G Taru Sharma designed, planned the execution of present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Taru Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratheesh, M.D., Gade, N.E., Dubey, P.K. et al. Molecular characterization and xenogenic application of wharton’s jelly derived caprine mesenchymal stem cells. Vet Res Commun 38, 139–148 (2014). https://doi.org/10.1007/s11259-014-9597-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-014-9597-y

Keywords

Navigation