Advertisement

Veterinary Research Communications

, Volume 37, Issue 3, pp 187–196 | Cite as

Co-expression of the Bcl-xL antiapoptotic protein enhances the induction of Th1-like immune responses in mice immunized with DNA vaccines encoding FMDV B and T cell epitopes

  • Sultan Gülçe İzEmail author
  • Mert Döşkaya
  • Belen Borrego
  • Fernando Rodriguez
  • Yüksel Gürüz
  • İsmet Deliloğlu Gürhan
Original Article

Abstract

Foot-and-mouth disease (FMD) is one of the most devastating animal diseases, affecting all cloven-hoofed domestic and wild animal species. Previous studies from our group using DNA vaccines encoding FMD virus (FMDV) B and T cell epitopes targeted to antigen presenting cells, allowed demonstrating total protection from FMDV homologous challenge in those animals efficiently primed for both humoral and cellular specific responses (Borrego et al. Antivir Res 92:359-363, 2011). In this study, a new DNA vaccine prototype expected to induce stronger and cross-reactive immune responses against FMDV which was designed by making two main modifications: i) adding a new B-cell epitope from the O-serotype to the B and T-cell epitopes from the C-serotype and ii) using a dual promoter plasmid that allowed inserting a new cistron encoding the anti-apoptotic Bcl-xL gene under the control of the internal ribosomal entry site (IRES) of encephalomyocarditis virus aiming to increase and optimize the antigen presentation of the encoded FMDV epitopes after in vivo immunization. In vitro studies showed that Bcl-xL significantly prolonged the survival of DNA transfected cells (p < 0.001). Accordingly, vaccination of Swiss out-bred mice with the dual promoter plasmid increased the total IgG responses induced against each of the FMDV epitopes however no significant differences observed between groups. The humoral immune response was polarized through IgG2a in all vaccination groups (p < 0.05); except peptide T3A; in correspondence with the Th1-like response observed, a clear bias towards the induction of specific IFN-γ secreting CD4+ and CD8+ T cell responses was also observed, being significantly higher (p < 0.05) in the group of mice immunized with the plasmid co-expressing Bcl-xL and the FMDV B and T cell epitopes.

Keywords

FMDV B and T cell epitopes Bcl-xL anti-apoptotic protein Humoral immune responses Cellular immune responses 

Notes

Acknowledgements

This project is partly funded by The Scientific and Technological Research Council of Turkey (110O809), Ege University, Science and Technology Center (2011BIL020) and a complementary action between Spain and Turkey (PCI2005-A7-0092). The authors acknowledge EP Martin, Ph.D. and JM Marques, Ph.D. for their technical help. The specific MAbs against FMDV were kindly provided by Emilliana Brocchi, Ph.D., from Istituto Zooprofilattico Sperimentale Della Lombardia, Italy.

References

  1. An LL, Whitton JL (1997) A multivalent minigene vaccine, containing B-Cell, cytotoxic T-Lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. J Virol 71:2292–2302PubMedGoogle Scholar
  2. Argilaguet JM, Perez-Martin E, Gallardo C, Salguero FJ, Borrego B, Lacasta A, Accensi F, Diaz I, Nofrarias M, Pujols J, Blanco E, Perez-Filgueira M, Escribano JM, Rodriguez F (2011) Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine 29:5379–5385. doi: 10.1016/j.vaccine.2011.05.084 PubMedCrossRefGoogle Scholar
  3. Barnard AL, Arriens A, Cox S, Barnett P, Kristensen B, Summerfield A, McCullough KC (2005) Immune response characteristics following emergency vaccination of pigs against foot-and-mouth disease. Vaccine 23(8):1037–1047. doi: 10.1016/j.vaccine.2004.07.034 PubMedCrossRefGoogle Scholar
  4. Barteling SJ, Vreeswijk J (1991) Developments in foot-and-mouth disease vaccines. Vaccine 9(2):75–88PubMedCrossRefGoogle Scholar
  5. Blanco E, Garcia-Briones M, Sanz-Parra A, Gomes P, De Oliveira E, Valero ML, Andreu D, Ley V, Sobrino F (2001) Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease virus. J Virol 75:3164–3174. doi: 10.1128/JVI.75.7.3164-3174.2001 PubMedCrossRefGoogle Scholar
  6. Blomer U, Kafri T, Randolph-Moore L, Verma IM, Gage FH (1998) Bcl-xL protects adult septal cholinergic neurons from axotomized cell death. Proc Natl Acad Sci U S A 95(5):2603–2608PubMedCrossRefGoogle Scholar
  7. Borrego B, Fernandez-Pacheco P, Ganges L, Domenech N, Fernandez-Borges N, Sobrino F, Rodriguez F (2006) DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine 24:3889–3899. doi: 10.1016/j.vaccine.2006.02.028 PubMedCrossRefGoogle Scholar
  8. Borrego B, Argilaguet JM, Perez-Martin E, Dominguez J, Perez-Filgueira M, Escribano JM, Sobrino F, Rodriguez F (2011) A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antivir Res 92:359–363. doi: 10.1016/j.antiviral.2011.07.017 PubMedCrossRefGoogle Scholar
  9. Burman A, Clark S, Abrescia NGA, Fry EE, Stuart DI, Jackson T (2006) Specificity of the VP1 GH loop of foot-and-mouth disease virus for αv integrins. J Virol 80:9798–9810. doi: 10.1128/JVI.00577-06 PubMedCrossRefGoogle Scholar
  10. Cedillo-Barron L, Foster-Cuevas M, Cook A, Gutierrez-Castaneda B, Kollnberger S, Lefevre F, Parkhouse RME (2003) Immunogenicity of plasmids encoding T and B cell epitopes of foot-and-mouth disease virus (FMDV) in swine. Vaccine 21:4261–4269PubMedCrossRefGoogle Scholar
  11. Childerstone A, Cedillo-Baron C, Foster-Cuevas M, Parkhouse M (1999) Demonstration of bovine CD8+ T-cell responses to foot-and mouth disease virus. J Gen Virol 80:663–669PubMedGoogle Scholar
  12. Davies G (2002) Foot and mouth disease. Res Vet Sci 73:195–199PubMedCrossRefGoogle Scholar
  13. De Diego M, Brocchi E, Mackay D, De Simone F (1997) The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch Virol 142:2021–2033PubMedCrossRefGoogle Scholar
  14. Doel TR (2003) FMD vaccines. Virus Res 91:81–99PubMedCrossRefGoogle Scholar
  15. Döşkaya M, Kalantari-Dehaghi M, Walsh CM, Hiszczynska-Sawicka E, Davies DH, Felgner PL, Larsen LS, Lathrop RH, Hatfield GW, Schulz JR, Gürüz Y, Jurnak F (2007) GRA1 protein vaccine confers better immune response compared to codon-optimized GRA1 DNA vaccine. Vaccine 25:1824–1837. doi: 10.1016/j.vaccine.2006.10.060 PubMedCrossRefGoogle Scholar
  16. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW (2006) Bcl-xL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6:213. doi: 10.1186/1471-2407-6-213 PubMedCrossRefGoogle Scholar
  17. Ganges L, Borrego B, Fernandez-Pacheco P, Revilla C, Fernandez-Borges N, Dominguez J, Sobrino F, Rodriguez F (2011) DNA immunization of pigs with foot-and-mouth disease virus minigenes: from partial protection to disease exacerbation. Virus Res 157:121–125. doi: 10.1016/j.virusres.2011.02.003 PubMedCrossRefGoogle Scholar
  18. Garcia-Briones MM, Blanco E, Chiva C, Andreu D, Ley V, Sobrino F (2004) Immunogenicity and T cell recognition in swine of foot-and-mouthdisease virus polymerase 3D. J Virol 322:264–275. doi: 10.1016/j.virol.2004.01.027 CrossRefGoogle Scholar
  19. Gil F, Perez-Filgueira M, Barderas MG, Pastor-Vargas C, Alonso G, Vivanco F, Escribano JM (2011) Targeting antigens to an invariant epitope of the MHC Class II DR molecule potentiates the immune response to subunit vaccines. Virus Res 155:55–60. doi: 10.1016/j.virusres.2010.08.022 PubMedCrossRefGoogle Scholar
  20. Glass EJ, Oliver RA, Collen T, Doel TR, Dimarchi R, Spooner RL (1991) MHC class II restricted recognition of FMDV peptides by bovine T cells. Immunology 74:594–599PubMedGoogle Scholar
  21. Grubman MJ, Baxt B (2004) Foot and mouth disease. Clin Microbiol Rev 17:465–493PubMedCrossRefGoogle Scholar
  22. Gulce Iz S, Calımlıoglu B, Deliloglu Gurhan SI (2012) Using Bcl-xL anti-apoptotic protein for altering target cell apoptosis. Electron J Biotechnol 5(5). doi: 10.2225/vol15-issue5-fulltext-2
  23. Guzman E, Taylor G, Charleston B, Ellis SA (2010) Induction of a cross-reactive CD8(+) T cell response following foot-and-mouth disease virus vaccination. J Virol 84(23):12375–12384. doi: 10.1128/JVI.01545-10 PubMedCrossRefGoogle Scholar
  24. Huang B, Mao CP, Peng S, He L, Hung CF, Wu TC (2007) Intradermal administration of DNA vaccines combining a strategy to bypass antigen processing with a strategy to prolong dendritic cell survival enhances DNA vaccine potency. Vaccine 25:7824–7831. doi: 10.1016/j.vaccine.2007.08.036 PubMedCrossRefGoogle Scholar
  25. Joshi G, Sharma R, Kumar Kakker N (2009) Phenotypic and functional characterization of T-cells and in vitro replication of FMDV serotypes in bovine lymphocytes. Vaccine 27:6656–6661. doi: 10.1016/j.vaccine.2009.08.107 PubMedCrossRefGoogle Scholar
  26. Kim TW, Hung CF, Zheng M, Boyd DAK, He L, Pa SI, Wu TC (2004) A DNA vaccine co-expressing antigen and an anti-apoptotic molecule further enhances the antigen-specific CD8+ T-cell immune response. J Biomed Sci 11:493–499. doi: 10.1159/000077899 PubMedGoogle Scholar
  27. Kim JH, Chen J, Majumder N, Lin H, Falo LD (2005) Survival gene Bcl-xl potentiates DNA-raised antitumor immunity. Gene Ther 12:1517–1525. doi: 10.1038/sj.gt.3302584 PubMedCrossRefGoogle Scholar
  28. Knowles NJ, Samuel AR, Davies PR, Midgley RJ, Valarcher JF (2005) Pandemic strain of foot-and-mouth disease virus serotype O. Emerg Infect Dis 11:1887–1893PubMedCrossRefGoogle Scholar
  29. Kutzler M, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788. doi: 10.1038/nrg2432 PubMedCrossRefGoogle Scholar
  30. Lin F, Shen X, McCoy JR, Mendoza JM, Yan J, Kemmerrer SV, Khan AS, Weiner DB, Broderick KE, Sardesai NY (2011) A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 39:6771–6780. doi: 10.1016/j.vaccine.2010.12.057 CrossRefGoogle Scholar
  31. Mateu MG (1987) Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Res 8:261–274PubMedCrossRefGoogle Scholar
  32. McCahon D, Crowther DJ, Belsham GJ, Kitson JD, Duchesne M, Have P, Meloen RH, Morgan DO, Simone FD (1989) Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J Gen Virol 70:639–645PubMedCrossRefGoogle Scholar
  33. McCullough K, Sobrino F (2004) Immunology of foot-and-mouth disease Virus. In: McCullough K, Sobrino F (eds) Foot-and-mouth disease virus, current perspectives. Horizon Scientific Press, UK, pp 173–222Google Scholar
  34. McCullough KC, Bruckner L, Schaffner R, Fraefel W, Muller HK et al (1992) Relationship between the anti-FMD virus antibody reaction as measured by different assays, and protection in vivo against challenge infection. Vet Microbiol 30:99–112. doi: 10.1016/0378-1135(92)90106-4 PubMedCrossRefGoogle Scholar
  35. Mingxiao M, Ningyi J, Juan LH, Mina Z, Guoshuna S, Guangze Z, Huijun L, Xiaowei H, Minglan J, Xu L, Haili M, Yue J, Gefen Y, Kuoshi J (2007) Immunogenicity of plasmids encoding P12A and 3C of FMDV and swine IL-18. Antivir Res 76:59–67. doi: 10.1016/j.antiviral.2007.05.003 PubMedCrossRefGoogle Scholar
  36. Murtaugh MP, Foss DL (2002) Inflamatory cytokines and antigen presenting cell activation. Vet Immunol Immunopathol 87:109–121PubMedCrossRefGoogle Scholar
  37. Niborski V, Li Y, Brennan F, Lane M, Torche AM, Remond M, Bonneau M, Riffault S, Stirling C, Hutchings G, Takamatsu H, Barnett P, Charley B, Schwartz-Cornil I (2006) Efficacy of particle-based DNA delivery for vaccination of sheep against FMD. Vaccine 24:7204–7213. doi: 10.1016/j.vaccine.2006.06.048 PubMedCrossRefGoogle Scholar
  38. Oh Y, Fleming L, Statham B, Hamblin P, Barnett P et al (2012) Interferon-c ınduced by ın vitro re-stimulation of CD4+ T-cells correlates with ın vivo FMD vaccine ınduced protection of cattle against disease and persistent ınfection. PLoS One 7(9):e44365. doi: 10.1371/journal.pone.0044365 PubMedCrossRefGoogle Scholar
  39. Rodriguez F, Harkins S, Redwine JM, de Pereda JM, Whitton JL (2001) CD4(+) T cells induced by a DNA vaccine: immunological consequences of epitope-specific lysosomal targeting. J Virol 75(21):10421–10430. doi: 10.1128/JVI.75.21.10421-10430.2001 PubMedCrossRefGoogle Scholar
  40. Rush CM, Mitchell TJ, Garside P (2010) A detailed characterisation of the distribution and presentation of DNA vaccine encoded antigen. Vaccine 28:1620–1634. doi: 10.1016/j.vaccine.2009.11.014 PubMedCrossRefGoogle Scholar
  41. Saiz M, Gomez S, Martinez-Salas E, Sobrino F (2001) Deletion or substitution of the aphthovirus 3’NCR abrogates infectivity and virus replication. J Gen Virol 82:93–101PubMedGoogle Scholar
  42. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429. doi: 10.1016/j.coi.2011.03.008 PubMedCrossRefGoogle Scholar
  43. Shi XJ, Wang B, Wang B (2007) Immune enhancing effects of recombinant bovine IL-18 on foot-and-mouth disease vaccination in mice model. Vaccine 25:1257–1264. doi: 10.1016/j.vaccine.2006.10.017 PubMedCrossRefGoogle Scholar
  44. Sobrino F, Domingo E (2001) Foot-and-mouth disease in Europe, FMD is economically the most important disease of farm animals. Its reemergence in Europe is likely to have consequences that go beyond severe alterations of livestock production and trade. EMBO Rep 459–461Google Scholar
  45. Sobrino F, Saiz M, Jimenez-Clavero MA, Nunez JI, Rosas MF et al (2001) Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res 32:1–30. doi: 10.1051/vetres:2001106 PubMedCrossRefGoogle Scholar
  46. Su C, Duan X, Wang X, Wang C, Cao R, Zhou B, Chen P (2007) Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Vet Microbiol 124:256–263. doi: 10.1016/j.vetmic.2007.04.030 PubMedCrossRefGoogle Scholar
  47. Su B, Wang J, Wang X, Jin H, Zhao G, Ding Z, Kang Y, Wang B (2008) The effects of IL-6 and TNF-α as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination. Vaccine 26:5111–5122. doi: 10.1016/j.vaccine.2008.03.089 PubMedCrossRefGoogle Scholar
  48. Wang CY, Chang TY, Walfield AM, Ye J, Shen M, Chen SP, Li MC, Lin YL, Jong MH, Yang PC, Chyr N, Kramer E, Brown F (2002) Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine 20:2603–2610. doi: 10.1016/j.vetmic.2007.05.033 PubMedCrossRefGoogle Scholar
  49. Wang F, He XW, Jiang L, Ren D, He Y, Li DA, Sun SH (2006) Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine 24:2017–2026. doi: 10.1016/j.vaccine.2005.11.042 PubMedCrossRefGoogle Scholar
  50. Wang JL, Liu MQ, Han J, Chen WZ, Cong W, Cheng G, Gao YH, Lu YG, Chen LJ, Zuo XP, Yan WY, Zheng ZX (2007) A peptide of foot-and-mouth disease virus serotype Asia1 generating a neutralizing antibody response, and an immunostimulatory peptide. Vet Microbiol 125:224–231PubMedCrossRefGoogle Scholar
  51. Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26:2100–2110. doi: 10.1016/j.vaccine.2008.02.033 PubMedCrossRefGoogle Scholar
  52. Weiner DB (2008) DNA vaccines: crossing a line in the sand, Introduction to special issue. Vaccine 26:5073–5074PubMedCrossRefGoogle Scholar
  53. Wong HT, Cheng SCS, Chan EWC, Sheng ZT, Yan WY, Zheng ZX, Xie Y (2000) Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection. J Virol 278:27–35. doi: 10.1006/viro.2000.0607 CrossRefGoogle Scholar
  54. Wong HT, Cheng SCS, Sin FWY, Chan EWC, Sheng ZT, Xie Y (2002) A DNA vaccine against foot-and-mouth disease elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine 20:2641–2647PubMedCrossRefGoogle Scholar
  55. Xiao C, Jin H, Hu Y, Kang Y, Wang J, Du X, Yang Y, She R, Wang B (2007) Enhanced protective efficacy and reduced viral load of foot-and-mouth disease DNA vaccine with co-stimulatory molecules as the molecular adjuvants. Antivir Res 76:11–20. doi: 10.1016/j.antiviral.2007.04.002 PubMedCrossRefGoogle Scholar
  56. Yang Y, Xiong Z, Zhang S, Yan Y, Nguyen J, Bernard NG, Huifang LU, Brendese J, Yang F, Wang H, Yang XF (2005) Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J 392:135–143. doi: 10.1042/BJ20050698 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sultan Gülçe İz
    • 1
    Email author
  • Mert Döşkaya
    • 2
  • Belen Borrego
    • 3
  • Fernando Rodriguez
    • 4
  • Yüksel Gürüz
    • 2
  • İsmet Deliloğlu Gürhan
    • 1
  1. 1.Department of BioengineeringEge University Faculty of EngineeringBornovaTurkey
  2. 2.Department of ParasitologyEge University Medical SchoolBornovaTurkey
  3. 3.Centro de Investigacion en Sanidad Animal, CISA-INIAMadridSpain
  4. 4.Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTABarcelonaSpain

Personalised recommendations