Advertisement

Veterinary Research Communications

, Volume 36, Issue 2, pp 139–148 | Cite as

Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells–a comparative study

  • Christine M. ReichEmail author
  • Oksana Raabe
  • Sabine Wenisch
  • Philip S. Bridger
  • Martin Kramer
  • Stefan Arnhold
Original Article

Abstract

In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

Keywords

Dog Mesenchymal stem cells Chondrogenic differentiation Cartilage Osteoarthritis 

Notes

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

References

  1. Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt K, Addicks K, Schraermeyer U (2006a) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 9:4121–4129. doi: 10.1167/iovs.04-1501 CrossRefGoogle Scholar
  2. Arnhold S, Klein H, Klinz F, Absenger Y, Schmidt A, Schinköthe T, Brixius K, Kozlowski J, Desai B, Bloch W, Addicks K (2006b) Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol 6:551–565. doi: 10.1016/j.ejcb.2006.01.015 CrossRefGoogle Scholar
  3. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 10:1095–1105. doi: 10.2460/ajvr.68.10.1095 CrossRefGoogle Scholar
  4. Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2:237–245. doi: 10.1002/jcp.21592 CrossRefGoogle Scholar
  5. Awad HA, Halvorsen YC, Gimble JM, Guilak F (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 6:1301–1312. doi: 10.1089/10763270360728215 CrossRefGoogle Scholar
  6. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 4:568–584. doi: 10.1016/j.biocel.2003.11.001 CrossRefGoogle Scholar
  7. Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 2:174–178. doi: 10.1038/ng0697-174 CrossRefGoogle Scholar
  8. Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 4:272–284Google Scholar
  9. Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 3:192–200Google Scholar
  10. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 5:1076–1084. doi: 10.1002/jcb.20886 CrossRefGoogle Scholar
  11. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 2:798–800CrossRefGoogle Scholar
  12. Chen FH, Tuan RS (2008) Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 5:223. doi: 10.1186/ar2514 CrossRefGoogle Scholar
  13. Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 8:811–821. doi: 10.1007/s11259-009-9229-0 CrossRefGoogle Scholar
  14. Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 6:507–520. doi: 10.1007/s00418-007-0337-z CrossRefGoogle Scholar
  15. Csaki C, Schneider PRA, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 5:395–412. doi: 10.1016/j.aanat.2008.07.007 CrossRefGoogle Scholar
  16. Csaki C, Matis U, Mobasheri A, Shakibaei M (2009) Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 2:251–266. doi: 10.1007/s00418-008-0524-6 CrossRefGoogle Scholar
  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 4:315–317. doi: 10.1080/14653240600855905 CrossRefGoogle Scholar
  18. Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 4:1222–1232. doi: 10.1002/art.21779 CrossRefGoogle Scholar
  19. Frisbie DD, Smith RKW (2010) Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J 1:86–89. doi: 10.2746/042516409X477263 Google Scholar
  20. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 12:1675–1680. doi: 10.1002/jor.20933 CrossRefGoogle Scholar
  21. Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW (2011) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 1:25–32. doi: 10.1111/j.2042-3306.2011.00363.x Google Scholar
  22. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 3:682–691. doi: 10.1002/jcp.20977 CrossRefGoogle Scholar
  23. Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 6:1383–1389. doi: 10.1016/j.orthres.2005.03.008.1100230621 Google Scholar
  24. Im G, Shin Y, Lee K (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 10:845–853. doi: 10.1016/j.joca.2005.05.005 CrossRefGoogle Scholar
  25. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 5:1285–1297. doi: 10.1002/jcb.20904 CrossRefGoogle Scholar
  26. Jung M, Kaszap B, Redöhl A, Steck E, Breusch S, Richter W, Gotterbarm T (2009) Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant 8:923–932. doi: 10.3727/096368909X471297 CrossRefGoogle Scholar
  27. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 2:125–134CrossRefGoogle Scholar
  28. Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM (2006) Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 11:1921–1928. doi: 10.2460/ajvr.67.11.1921 CrossRefGoogle Scholar
  29. Kang JW, Kang K, Koo HC, Park JR, Choi EW, Park YH (2008) Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cell Dev 4:681–693. doi: 10.1089/scd.2007.0153 CrossRefGoogle Scholar
  30. Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine–principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 2:155–165Google Scholar
  31. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil 2:226–231. doi: 10.1016/j.joca.2006.08.008 CrossRefGoogle Scholar
  32. Le Blanc K, Ringdén O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 5:509–525. doi: 10.1111/j.1365-2796.2007.01844.x CrossRefGoogle Scholar
  33. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 4–6:311–324. doi: 10.1159/000080341 CrossRefGoogle Scholar
  34. Lee KBL, Hui JHP, Im Song C, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell 11:2964–2971. doi: 10.1634/stemcells.2006-0311 CrossRefGoogle Scholar
  35. Lee RH, Oh JY, Choi H, Bazhanov N (2011) Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem 11:3073–3078. doi: 10.1002/jcb.23250 CrossRefGoogle Scholar
  36. Lefebvre V, de Crombrugghe B (1998) Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 9:529–540CrossRefGoogle Scholar
  37. Liang C, Park AY, Guan J (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. doi: 10.1038/nprot.2007.30 PubMedCrossRefGoogle Scholar
  38. Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X, Tian W (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 4:929–939CrossRefGoogle Scholar
  39. Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cell 3:750–760. doi: 10.1634/stemcells.2006-0394 Google Scholar
  40. Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 2:98–105. doi: 10.1016/j.abb.2008.02.030 CrossRefGoogle Scholar
  41. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 12:3464–3474. doi: 10.1002/art.11365 CrossRefGoogle Scholar
  42. Neupane M, Chang C, Kiupel M, Yuzbasiyan-Gurkan V (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 6:1007–1015CrossRefGoogle Scholar
  43. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 7:928–937. doi: 10.2460/ajvr.69.7.928 CrossRefGoogle Scholar
  44. Nöth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nature clinical practice. Rheumatology 7:371–380. doi: 10.1038/ncprheum0816 Google Scholar
  45. Pan GJ, Chang ZY, Schöler HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 5–6:321–329. doi: 10.1038/sj.cr.7290134 CrossRefGoogle Scholar
  46. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 3:424–436CrossRefGoogle Scholar
  47. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 5411:143–147CrossRefGoogle Scholar
  48. Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert H, Arnhold S (2010) Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 6:545–554. doi: 10.1007/s00418-010-0760-4 CrossRefGoogle Scholar
  49. Raabe O, Shell K, Würtz A, Reich CM, Wenisch S, Arnhold S (2011) Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells. Vet Res Commun 6:355–365. doi: 10.1007/s11259-011-9480-z CrossRefGoogle Scholar
  50. Sanderson RO, Beata C, Flipo R, Genevois J, Macias C, Tacke S, Vezzoni A, Innes JF (2009) Systematic review of the management of canine osteoarthritis. Vet Rec 14:418–424CrossRefGoogle Scholar
  51. Sekiya I, Koopman P, Tsuji K, Mertin S, Harley V, Yamada Y, Shinomiya K, Nifuji A, Noda M (2001) Dexamethasone enhances SOX9 expression in chondrocytes. J Endocrinol 3:573–579CrossRefGoogle Scholar
  52. Smith RKW (2008) Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 20–22:1752–1758. doi: 10.1080/09638280701788241 CrossRefGoogle Scholar
  53. Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 7:319–326. doi: 10.1111/j.1432-0436.2004.07207003.x CrossRefGoogle Scholar
  54. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 7:613–622. doi: 10.1111/j.1532-950X.2007.00313.x CrossRefGoogle Scholar
  55. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 8:713–724. doi: 10.1111/j.1532-950X.2008.00462.x CrossRefGoogle Scholar
  56. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 3:279–289. doi: 10.3727/096368909X481764 CrossRefGoogle Scholar
  57. Weiss C, Rosenberg L, Helfet AJ (1968) An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg 4:663–674Google Scholar
  58. Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 12:4279–4295. doi: 10.1091/mbc.E02-02-0105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christine M. Reich
    • 1
    Email author
  • Oksana Raabe
    • 1
  • Sabine Wenisch
    • 1
  • Philip S. Bridger
    • 2
  • Martin Kramer
    • 3
  • Stefan Arnhold
    • 1
  1. 1.Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary MedicineJustus-Liebig-University GiessenGiessenGermany
  2. 2.Institute for Hygiene and Infectious Diseases of Animals, Faculty of Veterinary MedicineJustus-Liebig-University GiessenGiessenGermany
  3. 3.Department of Veterinary Clinical Sciences, Small Animal Clinic, Faculty of Veterinary MedicineJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations