Coll2-1, Coll2-1NO2 and myeloperoxidase concentrations in the synovial fluid of equine tarsocrural joints affected with osteochondrosis

  • Denis R. Verwilghen
  • Ann Martens
  • Evita Busschers
  • Thierry Franck
  • Michelle Deberg
  • Yves Henrotin
  • Laurent Vanderheyden
  • Didier Serteyn
Original Article


The measurement of biomarkers that reflect cartilage breakdown is a powerful tool for investigating joint damage caused by disease or injury. Particularly in cases of osteochondrosis, synovial concentrations of these biomarkers may reveal the presence of osteoarthritic changes. Coll2-1, Coll2-1 NO2 and myeloperoxidase have recently been introduced in equine osteoarticular research but comparison between the concentrations of these markers in OCD affected and healthy joints has not been made. Therefore, this study aimed at reporting the synovial concentrations of these biomarkers in joints affected with osteochondral fragments in the tarsocrural joint compared to unaffected joints. Myeloperoxidase and Coll2-1NO2 revealed to have similar levels between affected joints and controls. However, in contrast to previous studies using C2C the present study demonstrated that synovial levels of Coll2-1 were significantly elevated in tarsocrural joints affected with osteochondrosis. Thus, Coll2-1 may be an earlier marker of cartilage degeneration than other cartilage degradation markers that have been previously used in equine medicine.


Horse Biomarkers Osteochondrosis Coll2-1 MPO Collagen degradation 



The authors would like to acknowledge Mireille Weber for her assistance in processing the samples.


  1. Ameye LG, Deberg M, Oliveira M, Labasse A, Aeschlimann JM, Henrotin Y (2007) The chemical biomarkers C2C, Coll2-1, and Coll2-1NO2 provide complementary information on type II collagen catabolism in healthy and osteoarthritic mice. Arthritis Rheum 56(10):3336–3346PubMedCrossRefGoogle Scholar
  2. Art T, Franck T, Gangl M, Votion D, Kohnen S, Deby-Dupont G, Serteyn D (2006) Plasma concentrations of myeloperoxidase in endurance and 3-day event horses after a competition. Equine Vet J Suppl 36:298–302PubMedCrossRefGoogle Scholar
  3. Auer JA (2006) The Tarsus. In: Auer JA, Stick JA (eds) Equine surgery, 3rd edn. Elsevier Saunders, St. Louis, pp 1288–1306CrossRefGoogle Scholar
  4. Baldus S, Eiserich JP, Brennan ML, Jackson RM, Alexander CB, Freeman BA (2002) Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free Radic Biol Med 33(7):1010–1019PubMedCrossRefGoogle Scholar
  5. Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, Heinegard D, Jordan JM, Kepler TB, Lane NE, Saxne T, Tyree B, Kraus VB (2006) Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr Cartil 14(8):723–727PubMedCrossRefGoogle Scholar
  6. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol Cell Physiol 40(5):C1424–C1437Google Scholar
  7. Billinghurst RC, Brama PA, van Weeren PR, Knowlton MS, McIlwraith CW (2004) Evaluation of serum concentrations of biomarkers of skeletal metabolism and results of radiography as indicators of severity of osteochondrosis in foals. Am J Vet Res 65(2):143–150PubMedCrossRefGoogle Scholar
  8. Brennan ML, Wu WJ, Fu XM, Shen ZZ, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-Soud HM, Ischiropoulos H, Hazen SL (2002) A tale of two controversies - defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 277(20):17415–17427PubMedCrossRefGoogle Scholar
  9. Burner U, Furtmuller PG, Kettle AJ, Koppenol WH, Obinger C (2000) Mechanism of reaction of myeloperoxidase with nitrite. J Biol Chem 275(27):20597–20601PubMedCrossRefGoogle Scholar
  10. de Grauw JC, Brama PA, Wiemer P, Brommer H, van de Lest CH, van Weeren PR (2006) Cartilage-derived biomarkers and lipid mediators of inflammation in horses with osteochondritis dissecans of the distal intermediate ridge of the tibia. Am J Vet Res 67(7):1156–1162PubMedCrossRefGoogle Scholar
  11. Deberg M, Labasse A, Christgau S, Cloos P, Henriksen DB, Chapelle JP, Zegels B, Reginster JY, Henrotin Y (2005a) New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil 13(3):258–265PubMedCrossRefGoogle Scholar
  12. Deberg MA, Labasse AH, Collette J, Seidel L, Reginster JY, Henrotin YE (2005b) One-year increase of Coll 2-1, a new marker of type II collagen degradation, in urine is highly predictive of radiological OA progression. Osteoarthr Cartil 13(12):1059–1065PubMedCrossRefGoogle Scholar
  13. Deberg M, Dubuc JE, Labasse A, Sanchez C, Quettier E, Bosseloir A, Crielaard JM, Henrotin Y (2008) One year follow-up of Coll2-1, Coll2-1NO2 and myeloperoxydase serum levels in oa patients after hip or knee replacement. Ann Rheum Dis 67:168–174PubMedCrossRefGoogle Scholar
  14. Enzerink E, Dik KJ, Knaap JH, Van Weeren PR (2000) Radiographic development of osteochondral lesions in the hock and stifle in a group of Dutch Warmblood horses from 1-24 months of age. Paper presented at the 39th annual congres BEVA, Birmingham, England, 13-16 September 2000Google Scholar
  15. Fietz S, Bondzio A, Moschos A, Hertsch B, Einspanier R (2008) Measurement of equine myeloperoxidase (MPO) activity in synovial fluid by a modified MPO assay and evaluation of joint diseases - an initial case study. Res Vet Sci 84(3):347–353PubMedCrossRefGoogle Scholar
  16. Franck T, Grulke S, Deby-Dupont G, Deby C, Duvivier H, Peters F, Serteyn D, (2005) Development of an enzyme-linked immunosorbent assay for specific equine neutrophil myeloperoxidase measurement in blood. Journal of Veterinary Diagnostic Investigation 17:412–419Google Scholar
  17. Gangl M, Serteyn D, Lejeun JP, Schneider N, Grulke S, Peters F, Vila T, Deby-Dupont G, Deberg M, Henrotin Y (2007) A type II-collagen derived peptide and its nitrated form as new markers of inflammation and cartilage degradation in equine osteochondral lesions. Res Vet Sci 82(1):68–75PubMedCrossRefGoogle Scholar
  18. Garvican ER, Vaughan-Thomas A, Innes JF, Clegg PD (2010) Biomarkers of cartilage turnover. Part 1: markers of collagen degradation and synthesis. Vet J 185(1):36–42PubMedCrossRefGoogle Scholar
  19. Gaut JP, Byun J, Tran HD, Lauber WM, Carroll JA, Hotchkiss RS, Belaaouaj A, Heinecke JW (2002) Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 109(10):1311–1319PubMedGoogle Scholar
  20. Green SP, Baker MS, Lowther DA (1990) Depolymerization of synovial fluid hyaluronic acid (HA) by the complete myeloperoxidase (MPO) system may involve the formation of a HA-MPO ionic complex. J Rheumatol 17(12):1670–1675PubMedGoogle Scholar
  21. Grulke S, Benbarek H, Caudron I, Deby-Dupont G, Mathy-Hartert M, Farnir F, Deby C, Lamy M, Serteyn D (1999) Plasma myeloperoxidase level and polymorphonuclear leukocyte activation in horses suffering from large intestinal obstruction requiring surgery: preliminary results. Can J Vet Res 63(2):142–147PubMedGoogle Scholar
  22. Henrotin Y, Debydupont G, Deby C, Debruyn M, Lamy M, Franchimont P (1993) Production of active oxygen species by isolated human chondrocytes. Br J Rheumatol 32(7):562–567PubMedCrossRefGoogle Scholar
  23. Henrotin YE, Zheng SX, Deby GP, Labasse AH, Crielaard JMR, Reginster JYL (1998) Nitric oxide downregulates interleukin 1 beta (IL-1 beta) stimulated IL-6, IL-8, and prostaglandin E-2 production by human chondrocytes. J Rheumatol 25(8):1595–1601PubMedGoogle Scholar
  24. Henrotin Y, Deberg M, Dubuc JE, Quettier E, Christgau S, Reginster JY (2004) Type II collagen peptides for measuring cartilage degradation. Biorheology 41(3–4):543–547PubMedGoogle Scholar
  25. Henrotin Y, Addison S, Kraus V, Deberg M (2007) Type II collagen markers in osteoarthritis: what do they indicate? Curr Opin Rheumatol 19(5):444–450PubMedCrossRefGoogle Scholar
  26. Henrotin Y, Deberg M, Mathy-Hartert M, Deby-Dupont G (2009) Biochemical biomarkers of oxidative collagen damage. Adv Clin Chem 49:31–55PubMedCrossRefGoogle Scholar
  27. Huebner JL, Williams JM, Deberg M, Henrotin Y, Kraus VB (2010) Collagen fibril disruption occurs early in primary guinea pig knee osteoarthritis. Osteoarthr Cartil 18(3):397–405PubMedCrossRefGoogle Scholar
  28. Jenner F, Ross MW, Martin BB, Richardson DW (2008) Scapulohumeral osteochondrosis. A retrospective study of 32 horses. Vet Comp Orthop Traumatol 21(5):406–412PubMedGoogle Scholar
  29. Kaur H, Halliwell B (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation - nitrotyrosine in serum and synovial-fluid from rheumatoid patients. FEBS Lett 350(1):9–12PubMedCrossRefGoogle Scholar
  30. Kuwabara K, Jyoyama H, Fleisch JH, Hori Y (2002) Inhibition of antigen-induced arthritis in guinea pigs by a selective LTB4 receptor antagonist LY293111Na. Inflamm Res 51(11):541–550PubMedCrossRefGoogle Scholar
  31. Laverty S, Ionescu M, Marcoux M, Boure L, Doize B, Poole AR (2000) Alterations in cartilage type-II procollagen and aggrecan contents in synovial fluid in equine osteochondrosis. J Orthop Res 18(3):399–405PubMedCrossRefGoogle Scholar
  32. Laverty S, Okouneff S, Ionescu M, Reiner A, Pidoux I, Webber C, Rossier Y, Billinghurst RC, Poole AR (2002) Excessive degradation of type II collagen in articular cartilage in equine osteochondrosis. J Orthop Res 20(6):1282–1289PubMedCrossRefGoogle Scholar
  33. Laws EG, Richardson DW, Ross MW, Moyer W (1993) Racing performance of standardbreds after conservative and surgical treatment for tarsocrural osteochondrosis. Equine Vet J 25(3):199–202PubMedCrossRefGoogle Scholar
  34. Lejeune JP, Serteyn D, Gangl M, Schneider N, Deby-Dupont G, Deberg M, Henrotin Y (2007) Plasma concentrations of a type II collagen-derived peptide and its nitrated form in growing ardenner sound horses and in horses suffering from juvenile digital degenerative osteoarthropathy. Vet Res Commun 31(5):591–601PubMedCrossRefGoogle Scholar
  35. Myers SL, Brandt KD, Eilam O (1995) Even low-grade synovitis significantly accelerates the clearance of protein from the canine knee. Implications for measurement of synovial fluid "markers" of osteoarthritis. Arthritis Rheum 38(8):1085–1091PubMedCrossRefGoogle Scholar
  36. Runge JJ, Biery DN, Lawler DF, Gregor TP, Evans RH, Kealy RD, Szabo SD, Smith GK (2008) The effects of lifetime food restriction on the development of osteoarthritis in the canine shoulder. Vet Surg 37(1):102–107PubMedCrossRefGoogle Scholar
  37. Schiller J, Arnhold J, Sonntag K, Arnold K (1996) NMR studies on human, pathologically changed synovial fluids: role of hypochlorous acid. Magn Reson Med 35(6):848–853PubMedCrossRefGoogle Scholar
  38. Schneider N, Mouithys-Mickalad AL, Lejeune JP, Deby-Dupont GP, Hoebeke M, Serteyn DA (2005) Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation. Biochem Biophys Res Commun 334(2):669–673PubMedCrossRefGoogle Scholar
  39. Serteyn D, Grulke S, Franck T, Mouithys-Mickalad A, Deby-Dupont G (2003) Neutrophile myeloperoxidase, protective enzyme with strong oxidative activities. Ann Med Vet 147(2):79–93Google Scholar
  40. Spellmeyer K (2003) Myeloperoxidase-Aktivität im Serum und in der Synovia bei Hunden mit Osteoarthritis Eine prospektive Studie. Doctoral Thesis, Freie Universität Berlin, BerlinGoogle Scholar
  41. Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J (2007) Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Orthop Res 25(9):1128–1135PubMedCrossRefGoogle Scholar
  42. Van Weeren PR (2006) Osteochondrosis. In: Auer JA, Stick JA (eds) Equine surgery, 3rd edn. Elsevier Saunders, St. Louis, pp 1166–1178CrossRefGoogle Scholar
  43. Verwilghen D, Busoni V, Gangl M, Franck T, Lejeune JP, Vanderheyden L, Detilleux J, Grulke S, Deberg M, Henrotin Y, Serteyn D (2009) Relationship between biochemical markers and radiographic scores in the evaluation of the osteoarticular status of Warmblood stallions. Res Vet Sci 87(2):319–328PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Denis R. Verwilghen
    • 1
    • 7
  • Ann Martens
    • 2
  • Evita Busschers
    • 3
  • Thierry Franck
    • 5
  • Michelle Deberg
    • 4
  • Yves Henrotin
    • 4
  • Laurent Vanderheyden
    • 6
  • Didier Serteyn
    • 1
    • 5
    • 6
  1. 1.Equine Clinic, Department of Companion Animals and EquidsFaculty of Veterinary Medicine of LiegeLiegeBelgium
  2. 2.Department of Surgery and Anesthesiology of Domestic Animals, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  3. 3.Veterinair Centrum SomerenSomerenThe Netherlands
  4. 4.Bone and Cartilage Research UnitUniversity of LiegeLiegeBelgium
  5. 5.Centre for Oxygen Research and DevelopmentUniversity of LiegeLiegeBelgium
  6. 6.European Centre of the Horse of Mont le SoieVielsalmBelgium
  7. 7.Equine Clinic, Faculty of Veterinary MedicineUniversity of Agricultural SciencesUppsalaSweden

Personalised recommendations