Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor

Abstract

Mesenchymal stem cells (MSC) are increasingly used as therapeutical aid for the orthopaedic injuries in the horse. MSC populate different tissues but the most commonly used for clinical purposes are isolated from bone marrow or adipose tissue. The first objective of this study was to investigate if the donor animal, the tissue of origin and the technique of isolation could influence the number of MSC available for transplantation after a short-term expansion. The second aim was to devise a culture system capable of increasing MSC lifespan and we tested the effect of basic fibroblast growth factor (bFGF). Results indicate that MSC can be efficiently isolated from both sources and supplementation of bFGF enhances proliferation rate maintaining differentiation potential. In addition, this study shows that collection, expansion and storage of frozen MSC can be performed for later therapeutic use.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amizuka N, Yamada M, Watanabe JI, Hoshi K, Fukushi M, Oda K, Ikehara Y, Ozawa H (1998) Morphological examination of bone synthesis via direct administration of basic fibroblast growth factor into rat bone marrow. Microsc Res Tech 41, 313–22. doi:10.1002/(SICI)1097-0029(19980515)41:4<313::AID-JEMT4>3.0.CO;2-R

  2. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 68, 1095–105. doi:10.2460/ajvr.68.10.1095

  3. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287, 98–105. doi:10.1016/S0014-4827(03)00138-1

  4. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64, 278–94. doi:10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F

  5. De Ugarte DA, Morizono K, et al. (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174, 101–9. doi:10.1159/000071150

  6. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107, 275–81. doi:10.1046/j.1365-2141.1999.01715.x

  7. Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59, 1182–7.

  8. Frisbie DD (2005) Future directions in treatment of joint disease in horses. Vet Clin North Am Equine Pract 21, 713–24, viii. doi:10.1016/j.cveq.2005.07.001

  9. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D (2008) Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 76, 118–29. doi:10.1111/j.1432-0436.2007.00207.x

  10. Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12, 1606–14. doi:10.1359/jbmr.1997.12.10.1606

  11. Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T (2007) FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 359, 108–14. doi:10.1016/j.bbrc.2007.05.067

  12. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99, 1285–97. doi:10.1002/jcb.20904

  13. Jiang Y, Jahagirdar BN, et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–9. doi:10.1038/nature00870

  14. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294-301. doi:10.1634/stemcells.2005-0342

  15. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP (2006) Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24, 1613–9. doi:10.1634/stemcells.2005-0264

  16. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14, 311–24. doi:10.1159/000080341

  17. Pittenger MF, Mackay AM, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–7. doi:10.1126/science.284.5411.143

  18. Reed SA, Johnson SE (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 215, 329–36. doi:10.1002/jcp.21312

  19. Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine--attempts at regenerating equine tendon after injury. Trends Biotechnol 25, 409–16. doi:10.1016/j.tibtech.2007.07.009

  20. Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35, 99–102. doi:10.2746/042516403775467388

  21. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203, 398–409. doi:10.1002/jcp.20238

  22. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24, 462–71. doi:10.1634/stemcells.2004-0331

  23. Stewart AA, Byron CR, Pondenis H, Stewart MC (2007) Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis. Am J Vet Res 68, 941–5. doi:10.2460/ajvr.68.9.941

  24. van den Bos C, Mosca JD, Winkles J, Kerrigan L, Burgess WH, Marshak DR (1997) Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 10, 45–50.

  25. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35, 601–10. doi:10.1111/j.1532-950X.2006.00197.x

  26. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36, 613–22. doi:10.1111/j.1532-950X.2007.00313.x

  27. Wagner W, Ho AD (2007) Mesenchymal stem cell preparations--comparing apples and oranges. Stem Cell Rev 3, 239–48. doi:10.1007/s12015-007-9001-1

  28. Zuk PA, Zhu M, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279–95. doi:10.1091/mbc.E02-02-0105

Download references

Acknowledgments

We thank Dr. Andrea Perota for osteonectin primers design and analysis of sequence homology.

Funding

This work was supported by grants from MUR (PRIN and TECLA), Fondazione Cariplo (NOBEL)

Author information

Correspondence to Silvia Colleoni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colleoni, S., Bottani, E., Tessaro, I. et al. Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33, 811 (2009). https://doi.org/10.1007/s11259-009-9229-0

Download citation

Keywords

  • Mesenchymal stem cells
  • Equine
  • Orthopaedic injuries
  • Bone marrow
  • Adipose tissue