Comparison of faecal culture and IS900 PCR assay for the detection of Mycobacterium avium subsp. paratuberculosis in bovine faecal samples

  • M. P. SoumyaEmail author
  • R. M. Pillai
  • P. X. Antony
  • H. K. Mukhopadhyay
  • V. N. Rao
Original Article


Comparative efficacy of faecal culture and IS900 Polymerase chain reaction (PCR) assay of faecal samples was investigated in 40 clinically suspected cases of Johne’s disease in dairy cattle. The sensitivity of faecal culture and PCR assay in this study was 52.5% (21/40) and 90% (36/40) respectively. All isolates appeared only on the mycobactin J supplemented Herrold’s egg yolk medium (HEYM) at 8–16 weeks post-inoculation, were acid-fast and were positive for IS900 PCR yielding a single amplicon of 217 bp. A total of 28 faecal samples out of 40 were positive by IS900 primary PCR assay for Mycobacterium avium subsp. paratuberculosis (Map) yielding an expected product of size 217 bp. Twelve faecal samples, which gave negative results in the primary PCR, were subjected to secondary PCR assay. Of the 12 samples, 8 gave positive results in the IS900 nested PCR (nPCR), which yielded a PCR product of 167 bp, proving better sensitivity of nPCR assay than single amplification PCR. PCR could detect additionally 15 samples as positive which were negative by faecal culture. The chi-square analysis showed a highly significant difference between the tests (P< 0.01). This study suggests that IS900-PCR-based detection of Map could be used as a potential diagnostic tool for rapid and effective Johne’s disease surveillance.


Johne’s disease Cattle Mycobacterium avium subsp. paratuberculosis (Map) Diagnosis Faecal culture IS900 Polymerase chain reaction 



Polymerase chain reaction


Herrold’s egg yolk medium


Mycobacterium avium subsp. paratuberculosis


Office International des Epizooties


Nested PCR


Hexadecylpyridinium chloride


Vancomycin, Amphotericin B and Nalidixic acid


Sodium dodecyl sulphate


Cetyl trimethyl ammonium bromide-Sodium chloride



The authors thank The Dean, Rajiv Gandhi College of Veterinary and Animal Sciences, Puducherry, for providing facilities to carry out the work.


  1. Buergelt, C.D., Williams, E., Monif, G.R.G., Pinedo, P., Decker, J.H. 2006. Nested Polymerase chain reaction and prenatal detection of Mycobacterium avium subspecies paratuberculosis (Map) in bovine allantoic fluid and fetuses. International Journal of Applied Research in Veterinary Medicine, 4(3), 232–238.Google Scholar
  2. Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S. 1984. Ruminant paratuberculosis (Johne’s disease): the current status and future prospects. Cornell Veterinarian, 74(3), 218–262.PubMedGoogle Scholar
  3. Collins, D.M., Gabric, D.M., de Lisle, G.W. 1989. Identification of a repetitive DNA sequence specific to Mycobacterium paratuberculosis. FEMS Microbiology Letters, 51(1), 175–178. doi: 10.1111/j.1574-6968.1989.tb03440.x PubMedCrossRefGoogle Scholar
  4. Collins, D.M., Hilbink, F., West, D.M., Hosie, B.D., Cooke, M.M., de Lisle, G.W. 1993a. Investigation of Mycobacterium paratuberculosis in sheep by faecal culture, DNA characterization and the polymerase chain reaction. Veterinary Record, 133(24), 599–600.PubMedGoogle Scholar
  5. Collins, D.M., Stephens, D.M., de Lisle, G.W. 1993b. Comparison of polymerase chain reaction tests and faecal culture for detecting Mycobacterium paratuberculosis in bovine faeces. Veterinary Microbiology, 36(3–4), 289–299. doi: 10.1016/0378-1135(93)90095-O PubMedCrossRefGoogle Scholar
  6. Cousins, D.V., Whittington, R., Marsh, I., Masters, A., Evans, R.J., Kluver, P. 1999. Mycobacteria distinct from Mycobacterium avium subsp. paratuberculosis isolated from the faeces of ruminants possess IS900-like sequences detectable by IS900 polymerase chain reaction: implications for diagnosis. Molecular and Cellular Probes, 13(6), 431–442. doi: 10.1006/mcpr.1999.0275 PubMedCrossRefGoogle Scholar
  7. Eishi, Y., Suga, M., Ishige, I., Kobayashi, D., Yamada, T., Takemura, T., Takizawa, T., Koike, M., Kudoh, S., Costabel, U., Guzman, J., Rizzato, G., Gambacorta, M., du Bois, R., Nicholson, A.G., Sharma, O.P., Ando, M. 2002. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. Journal of Clinical Microbiology, 40(1), 198–204. doi: 10.1128/JCM.40.1.198-204.2002 PubMedCrossRefGoogle Scholar
  8. Garrido, J.M., Cortabarria, N., Oguiza, J.A., Aduriz, G., Juste, R.A. 2000. Use of a PCR method on fecal samples for diagnosis of sheep paratuberculosis. Veterinary Microbiology, 77(3–4), 379–386. doi: 10.1016/S0378-1135(00)00323-0 PubMedCrossRefGoogle Scholar
  9. Giese, S.B., Ahrens, P. 2000. Detection of Mycobacterium avium subsp. paratuberculosis in milk from clinically affected cows by PCR and culture. Veterinary Microbiology, 77(3–4), 291–297. doi: 10.1016/S0378-1135(00)00314-X PubMedCrossRefGoogle Scholar
  10. Halldorsdottir, S., Englund, S., Nilsen, S.F., Olsaker, I. 2002. Detection of Mycobacterium avium subsp. paratuberculosis by buoyant density centrifugation, sequence capture PCR and dot blot hybridisation. Veterinary Microbiology, 87(4), 327–340. doi: 10.1016/S0378-1135(02)00082-2 PubMedCrossRefGoogle Scholar
  11. Hasonova, L., Pavlik, I. 2006. Economic impact of paratuberculosis in dairy cattle herds: a review. Veterinarni Medicina, 51(5), 193–211.Google Scholar
  12. Jenkins, P.A., Pattyn, S.R., Portaels, F. 1982. Diagnostic bacteriology. In: The biology of the mycobacteria. Ratledge, C. and Stanford, J. Academic press (London) Ltd., Vol. I, pp. 441–470.Google Scholar
  13. Johnson, D.W., Muscoplat, C.C., Larsen, A.B., Thoen, C.O. 1977. Skin testing, faecal culture and lymphocyte immunostimulation in cattle inoculated with Mycobacterium paratuberculosis. American Journal of Veterinary Research, 38, 2023–2025.PubMedGoogle Scholar
  14. Khare, S., Ficht, T.A., Santos, R.L., Romano, J., Ficht, A.R., Zhang, S., Grant, I.R., Libal, M., Hunter, D., Adams, L.G. 2004. Rapid and sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine milk and feces by a combination of immunomagnetic bead separation-conventional PCR and real-time PCR. Journal of Clinical Microbiology, 42(3), 1075–1081. doi: 10.1128/JCM.42.3.1075-1081.2004 PubMedCrossRefGoogle Scholar
  15. Mani, C., Selvakumar, N., Kumar, V., Narayanan, S., Narayanan, P.R. 2003. Comparison of DNA sequencing, PCR-SSCP and PhaB assays with indirect sensitivity testing for detection of rifampicin resistance in Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 7(7), 652–659.PubMedGoogle Scholar
  16. Manning, E.J.B., Collins, M.T. 2001. Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Review of Science and Technology in Office International des Epizooties, 20(1), 133–150.Google Scholar
  17. Marsh, I.B., Whittington, R.J. 2001. Progress towards a rapid polymerase chain reaction diagnostic test for the identification of Mycobacterium avium subsp. paratuberculosis in faeces. Molecular and Cellular Probes, 15(2), 105–118. doi: 10.1006/mcpr.2001.0345 PubMedCrossRefGoogle Scholar
  18. Matthews, P.R., McDiarmid, A., Collins, P., Brown, A. 1978. The dependence of some strains of Mycobacterium avium on mycobactin for initial and subsequent growth. Journal of Medical Microbiology, 11(1), 53–57.PubMedCrossRefGoogle Scholar
  19. Merkal, R.S., Curran, B.J. 1974. Growth and metabolic characteristics of Mycobacterium paratuberculosis. Applied Microbiology, 28(2), 276–279.PubMedGoogle Scholar
  20. Morrison, N.E., 1965. Circumvention of the mycobactin requirement of Mycobacterium paratuberculosis. Journal of Bacteriology, 89(3), 762–767.PubMedGoogle Scholar
  21. Office International des Epizooties (OIE). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2004. Paratuberculosis. Part 2., Section, 2.2., Chapter, 2.2.6Google Scholar
  22. Ott, S.L., Wells, S.J., Wagner, B.A. 1999. Herd-level economic losses associated with Johne’s disease on US dairy operations. Preventive Veterinary Medicine, 40(3–4), 179–192. doi: 10.1016/S0167-5877(99)00037-9 PubMedCrossRefGoogle Scholar
  23. Pavlik, I., Matlova, L., Bartl, J., Svastova, P., Dvorska, L., Whitlock, R. 2000. Parallel faecal and organ Mycobacterium avium subsp. paratuberculosis culture of different productivity types of cattle. Veterinary Microbiology, 77(3–4), 309–324. doi: 10.1016/S0378-1135(00)00316-3 CrossRefGoogle Scholar
  24. Pinedo, P.J., Rae, D.O., Williams, J.E., Donovan, G.A., Melendez, P., Buergelt, C.D. 2008. Association among results of serum ELISA, faecal culture and nested PCR on milk, blood and faeces for the detection of paratuberculosis in dairy cows. Transboundary and Emerging Diseases, 55(2), 125–133. doi: 10.1111/j.1865-1682.2007.01009.x PubMedCrossRefGoogle Scholar
  25. Rajeev, S., Zhang, Y., Sreevatsan, S., Motiwala, A.S., Byrum, B. 2005. Evaluation of multiple genomic targets for identification and confirmation of Mycobacterium avium subsp. paratuberculosis isolates using real-time PCR. Veterinary Microbiology, 105(3–4), 215–221. doi: 10.1016/j.vetmic.2004.10.018 PubMedCrossRefGoogle Scholar
  26. Reddacliff, L.A., Vadali, A., Whittington, R.J. 2003. The effect of decontamination protocols on the numbers of sheep strain of Mycobacterium avium subsp. paratuberculosis isolated from tissues and faeces. Veterinary Microbiology, 95(4), 271–282. doi: 10.1016/S0378-1135(03)00181-0 PubMedCrossRefGoogle Scholar
  27. Ronald, B.S.M. 2007. Development of Johne’s disease vaccine for sheep. Ph.D. thesis submitted to TANUVAS.Google Scholar
  28. Schonenbrucher, H., Abdulmawjood, A., Failing, K., Bulte, M. 2008. New triplex real-time PCR assay for detection of Mycobacterium avium subsp. paratuberculosis in bovine feces. Applied and Environmental Microbiology, 74(9), 2751–2758. doi: 10.1128/AEM.02534-07 PubMedCrossRefGoogle Scholar
  29. Semret, M., Turenne, C.Y., Behr, M.A. 2006. Insertion sequence IS900 revisited. Journal of Clinical Microbiology, 44(3), 1081–1083. doi: 10.1128/JCM.44.3.1081-1083.2006 PubMedCrossRefGoogle Scholar
  30. Shin, S. 1989. Report of the committee on Johne’s disease. Proceedings of the 93rd Annual Meeting of the United States Animal Health Association, 93, 380–381.Google Scholar
  31. Silverton, R.E., Anderson, M.J. 1961. Handbook of Medical Laboratory Formulae. Butterworths, London, pp. 118–119.Google Scholar
  32. Singh, N., Vihan, V.S., Singh, S.V., Gupta, V.K. 1998. Prevalence of Johne’s disease in organized goat herds. Indian Journal of Animal Sciences, 68, 41–42.Google Scholar
  33. Singh, S.V., Singh, A.V., Singh, R., Sandhu, K.S., Singh, P.K., Sohal, J.S., Gupta, V.K., Vihan, V.S. 2007. Evaluation of highly sensitive indigenous milk ELISA kit with faecal culture, milk culture and faecal-PCR for the diagnosis of bovine Johne’s disease (BJD) in India. Comparative Immunology, Microbiology and Infectious Diseases, 30, 175–186. doi: 10.1016/j.cimid.2006.12.002 PubMedCrossRefGoogle Scholar
  34. Sivakumar, P., Tripathi, B.N., Singh, N. 2005. Detection of Mycobacterium avium subsp. paratuberculosis in intestinal and lymph node tissues of water buffaloes (Bubalus bubalis) by PCR and bacterial culture. Veterinary Microbiology, 108(3–4), 263–270. doi: 10.1016/j.vetmic.2005.04.002 PubMedCrossRefGoogle Scholar
  35. Snedecor, G.W., Cochran, W.G. 1989. Statistical methods. 8th Edition, Iowa State University Press, Ames, Iowa.Google Scholar
  36. Sockett, D.C., Carr, D.J., Collins, M.T. 1992. Evaluation of conventional and radiometric fecal culture and a commercial DNA probe for diagnosis of Mycobacterium paratuberculosis infections in cattle. Canadian Journal of Veterinary Research, 56(2), 148–153.PubMedGoogle Scholar
  37. Sohal, J.S., Singh, S.V., Swati, S., Singh, A.V., Singh, P.K., Neelam, S., Komal, S., Narayanasamy, K., Maitra, A. 2007. Mycobacterium avium subspecies paratuberculosis diagnosis and strain typing- Present status and future developments. Indian Journal of Experimental Biology, 45(10), 843–852.PubMedGoogle Scholar
  38. Stabel, J.R. 1997. An improved method for cultivation of Mycobacterium paratuberculosis from bovine fecal samples and comparison to three other methods. Journal of Veterinary Diagnosis and Investigation, 9, 375–380.Google Scholar
  39. Stabel, J.R., Whitlock, R.H. 2001. An evaluation of a modified interferon– γ assay for the detection of paratuberculosis in dairy herds. Veterinary Immunology and Immunopathology, 79(1–2), 69–81. doi: 10.1016/S0165-2427(01)00253-7 PubMedCrossRefGoogle Scholar
  40. Sweeney, R.W., Whitlock, R.H., Rosenberger, A.E. 1992. Mycobacterium paratuberculosis cultured from milk and supramammary lymph nodes of infected asymptomatic cows. Journal of Clinical Microbiology, 30(1), 166–171.PubMedGoogle Scholar
  41. Tripathi, B.N., Munjal, S.K., Paliwal, O.P. 2002. An overview of paratuberculosis in animals. Indian Journal of Veterinary Pathology, 26, 1–10.Google Scholar
  42. Tripathi, B.N., Sivakumar, P., Paliwal, O.P., Singh, N. 2006. Comparison of IS900 tissue PCR, bacterial culture, johnin and serological tests for diagnosis of naturally occurring paratuberculosis in goats. Veterinary Microbiology, 116(1–3), 129–137. doi: 10.1016/j.vetmic.2006.03.017 PubMedCrossRefGoogle Scholar
  43. Vinodh Kumar, O.R. 2003. Comparison of single intradermal test and polymerase chain reaction for the diagnosis of bovine paratuberculosis in organized farms. M.V.Sc. thesis submitted to TANUVAS.Google Scholar
  44. Visser, I. 1999. Reproducibility of a faecal culture method for Mycobacterium paratuberculosis. Proceedings of the 6th International Colloquium on Paratuberculosis, Australia, pp. 41.Google Scholar
  45. Whittington, R.J., Marsh, I., Choy, E., Cousins, D. 1998. Polymorphisms in IS1311, an insertion sequence common to Mycobacterium avium and M. avium subsp. paratuberculosis, can be used to distinguish between and within these species. Molecular and Cellular Probes, 12(6), 349–358. doi: 10.1006/mcpr.1998.0194 PubMedCrossRefGoogle Scholar
  46. Whittington, R.J., Sergeant, E.S. 2001. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp. paratuberculosis in animal populations. Australian Veterinary Journal, 79(4), 267–278. doi: 10.1111/j.1751-0813.2001.tb11980.x PubMedCrossRefGoogle Scholar
  47. Whittington, R.J. 2009. Factors affecting isolation and identification of Mycobacterium avium subsp. paratuberculosis from fecal and tissue samples in a liquid culture system. Journal of Clinical Microbiology, 47(3), 614–622. doi: 10.1128/JCM.01986-08 PubMedCrossRefGoogle Scholar
  48. Yayo Ayele, W., Fischer, O., Svastova, P., Alexa, M., Machackova, M., Pavlik, I. 2002. Dairy and beef cattle paratuberculosis survey in intensive and extensive farming conditions. Proceedings of the 7th International Colloquium on Paratuberculosis, Spain, pp. 340–344.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. P. Soumya
    • 1
    • 2
    Email author
  • R. M. Pillai
    • 1
  • P. X. Antony
    • 1
  • H. K. Mukhopadhyay
    • 1
  • V. N. Rao
    • 3
  1. 1.Department of Veterinary MicrobiologyRajiv Gandhi College of Veterinary and Animal SciencesPuducherryIndia
  2. 2.Animal Husbandry Expert, Kudumbashree District Mission, Local Self Government DepartmentKeralaIndia
  3. 3.Department of Veterinary Medicine, Ethics and JurisprudenceRajiv Gandhi College of Veterinary and Animal SciencesPuducherryIndia

Personalised recommendations