Advertisement

Veterinary Research Communications

, Volume 33, Issue 5, pp 395–407 | Cite as

Alcelaphine herpesvirus-1 open reading frame 57 encodes an immediate-early protein with regulatory function

  • T. Leenadevi
  • R. G. DalzielEmail author
Original Article

Abstract

Alcelaphine herpesvirus-1 (AlHV-1) is the causative agent of Malignant Catarrhal fever, a lymphoproliferative and degenerative disease of large ruminants and ungulate species. The Alcelaphine Herpesvirus-1 gene product encoded by open reading frame 57 (ORF 57) is the positional homologue of the ORF 57 of Herpes Virus Saimiri (HVS), Kaposi’s Sarcoma associated herpesvirus (KSHV) and Murine Gammaherpesvirus 68 (MHV 68), the Epstein-Barr virus BMLF1 gene, the herpes simplex virus (HSV-1) ICP 27 and the IE 4 gene of Varicella Zoster virus (VZV). In these viruses the ORF 57 gene product is expressed very early and encodes a regulatory protein, which is essential for viral replication acting both at the transcriptional and post-transcriptional levels. The function of ORF 57 gene product in the life cycle of AlHV-1 however remains unknown. Here we examined the expression of this gene and the function of its product. We have demonstrated that it is expressed very early in infection and have shown that the ORF57 gene product activates the promoter of another classical transactivator gene ORF50. It activates ORF50 promoter driving expression of an intron-less reporter gene to 50 fold and does not have any effect on an intron-containing reporter gene driven by the ORF 50 promoter. The 50 fold increase in the luciferase activity was not correlated with a similar fold increase in the luciferase RNA levels indicating that ORF 57 protein acts at a post-transcriptional level to regulate gene expression.

Keywords

Cattle Mailgnant catarrhal fever Gammaherpesvirus Transcription 

Notes

Acknowledgements

This work was supported by Commonwealth Scholarships and Fellowships plan from the British Council and by the Wellcome Trust. FMF was in receipt of a University of Edinburgh Scholarship. We thank Hugh Reid and Irene Pow (Moredun Research Institute) for providing us the bovine turbinate cells and the C500 AlHV-1, Karen Knudson for generating the A9p construct and Dr B.M Dutia for helpful discussions.

References

  1. Albrecht, J. C., Nicholas, J., Biller, D., Cameron, K. R., Biesinger, B., Newman, C., Wittmann, S., Craxton, M. A., Coleman, H., Fleckenstein, B. & (1992). Primary structure of the herpesvirus saimiri genome. Journal of Virology 66, 5047–5058.PubMedGoogle Scholar
  2. Bridgen, A. (1991). The derivation of a restriction endonuclease map for Alcelaphine herpesvirus 1 DNA. Arch Virol 117, 183–192. doi: 10.1007/BF01310764 PubMedCrossRefGoogle Scholar
  3. Cooper, M., Goodwin, D. J., Hall, K. T., Stevenson, A. J., Meredith, D. M., Markham, A. F. & Whitehouse, A. (1999). The gene product encoded by ORF 57 of herpesvirus saimiri regulates the redistribution of the splicing factor SC-35. J Gen Virol 80, 1311–1316.PubMedGoogle Scholar
  4. Davison, A. J. & Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus. . Journal of General Virology 67, 1759–1781. doi: 10.1099/0022-1317-67-9-1759 PubMedCrossRefGoogle Scholar
  5. Ensser, A., Pflanz, R. & Fleckenstein, B. (1997). Primary structure of the alcelaphine herpesvirus 1 genome. Journal of Virology 71, 6517–6525.PubMedGoogle Scholar
  6. Frame, F. M. & Dalziel, R. G. (2008). Transcriptional control by ORF 50 of AlHV-1. Veterinary Research Communications 32, 215–223. doi: 10.1007/s11259-007-9027-5 PubMedCrossRefGoogle Scholar
  7. Goodwin, D. J., Hall, K. T., Giles, M. S., Calderwood, M. A., Markham, A. F. & Whitehouse, A. (2000). The carboxy terminus of the herpesvirus saimiri ORF 57 gene contains domains that are required for transactivation and transrepression. Journal of General Virology 81, 2253–2265.PubMedGoogle Scholar
  8. Hardy, W. R. & Sandri-Goldin, R. M. (1994). Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. Journal of Virology 68, 7790–7799.PubMedGoogle Scholar
  9. Honess, R. W. & Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14, 8–19.PubMedGoogle Scholar
  10. Ireri, R. G. (1999). Studies on some determinants of virulence in Alcelaphine herpesvirus-1. PhD Thesis University of Edinburgh.Google Scholar
  11. Kenney, S., Holley-Guthrie, E., Mar, E. C. & Smith, M. (1989). The Epstein-Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J Virol 63, 3878–3883.PubMedGoogle Scholar
  12. Kirshner, J. R., Lukac, D. M., Chang, J. & Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities [In Process Citation]. J Virol 74, 3586–3597. doi: 10.1128/JVI.74.8.3586-3597.2000 PubMedCrossRefGoogle Scholar
  13. Leenadevi, T. & Dalziel, B. (2008). The alcelaphine herpesvirus-1 ORF 57 encodes a nuclear shuttling protein. Veterinary Research Communications. doi: 10.1007/s11259-008-9187-y
  14. Lieberman, P. M., O'Hare, P., Hayward, G. S. & Hayward, S. D. (1986). Promiscuous trans activation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. J Virol 60, 140–148.PubMedGoogle Scholar
  15. Lukac, D. M., Kirshner, J. R. & Ganem, D. (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73, 9348–9361.PubMedGoogle Scholar
  16. McGregor, F., Phelan, A., Dunlop, J. & Clements, J. B. (1996). Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. Journal of Virology 70, 1931–1940.PubMedGoogle Scholar
  17. Perera, L. P., Kaushal, S., Kinchington, P. R., Mosca, J. D., Hayward, G. S. & Straus, S. E. J. V. (1994). Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homology ICP27. Journal of Virology 68, 2468–2477.PubMedGoogle Scholar
  18. Phelan, A., Dunlop, J. & Clements, J. B. (1996). Herpes simplex Virus type 1 protein IE63 affects the nuclear export of Virus intron-containing transcripts. Journal of General Virology 70, 5255–5265.Google Scholar
  19. Plowright, W., Ferris, R. D. & Scott, G. R. (1960). Blue wildebeest and the aetiological agent of bovine malignant catarrhal fever. Nature 188, 1167–1169. doi: 10.1038/1881167a0 PubMedCrossRefGoogle Scholar
  20. Sandri-Goldin, R. M. (1998). ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intron-less RNAs through an RGG motif. Genes and Development 12, 868–879. doi: 10.1101/gad.12.6.868 PubMedCrossRefGoogle Scholar
  21. Sandri-Goldin, R. M. & Mendoza, G. E. (1992). A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes and Development 6, 848–863. doi: 10.1101/gad.6.5.848 PubMedCrossRefGoogle Scholar
  22. Sing, M., Fraefel, C., Bello, L. J. & Lawrence, W. C. (1996). Identification and characterisation of BICP27, an early protein of bovine herpesvirus 1 which may stimulate mRNA 3′ processing. Journal of General Virology 77.Google Scholar
  23. Virgin, H. W., Latreille, P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J. & Speck, S. H. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. Journal of Virology 71, 5894–5904.PubMedGoogle Scholar
  24. Whitehouse, A., Carr, I. M., Griffiths, J. C. & Meredith, D. M. (1997). The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein-Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol 71, 2550–2554.PubMedGoogle Scholar
  25. Whitehouse, A., Cooper, M. & Meredith, D. M. (1998). The immediate-early gene product encoded by open reading frame 57 of herpesvirus saimiri modulates gene expression at a posttranscriptional level. J Virol 72, 857–861.PubMedGoogle Scholar
  26. Winkler, M., Rice, S. A. & Stamminger, T. (1994). UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. Journal of Virology 68, 3943–3954.PubMedGoogle Scholar
  27. Wong, K. M. & Levine, A. J. (1986). Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans. J Virol 60, 149–156.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Moredun Research Institute, Pentlands Science Park, Bush LoanMidlothianUK
  2. 2.The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK

Personalised recommendations