Development and validation of an oligonucleotide microarray for immuno-inflammatory genes of ruminants

  • Craig Watkins
  • Annie McKellar
  • Kirsty Jensen
  • Abraham George
  • Doug Jones
  • Michael J. Sharp
  • Karen Stevenson
  • John Hopkins
Original Article


This report describes the development of small DNA microarrays of fully defined genes suitable for projects requiring detailed analysis of gene expression in sheep and/or cattle. Two arrays have been developed; the first is a small reference microarray (RIGRA) that has been used to validate experimental design and methodology; the second, a larger array (RIGUA) containing probes for 516 ruminant immuno-inflammatory genes, each represented by non-overlapping 75mer oligonucleotides. Experiments used to validate this microarray were: (1) a comparison of gene expression profiles from sheep broncho-alveolar macrophages before and after in vitro activation with lipopolysaccharide (LPS), using the RIGRA; (2) the differential gene expression between five in vitro unstimulated sheep keratinocyte cultures; (3) LPS/interferon γ stimulated and unstimulated blood monocytes purified from Holstein-Friesians (Bos taurus) and Sahiwals (Bos indicus) cattle using the RIGUA. Real-time, quantitative RT-PCR was used to validate the gene expression profiles obtained with the RIGUA microarrays. The potential for using such an immunological tool in understanding the relative gene expression corresponding to immune-inflammatory responses of sheep and cattle is discussed.


Ruminant Microarray Immuno-inflammatory Gene expression 



amplified RNA


ovine alveolar macrophages


Ruminant Immuno-inflammatory Gene Reference Array


Ruminant Immuno-inflammatory Gene Universal Array



We are very grateful to Klemens Verlinger, Thorsten Forester, Douglas Roy of the Division of Pathway Medicine, University of Edinburgh, Anton Gossner, Jennifer Smeed, Colin Bayne and Sofia Roupaka of the Centre for Infectious Disease, University of Edinburgh and Tom McNeilly, Moredun Research Institute; for advice on microarray experimental designs, and microarray and real-time techniques; to the Clinical Division and Parasitology Divisions at the Moredun Research Institute for help with animal handling and faecal egg counts; to Jill Sales and Claus Mayer from BioSS for advice in analysis of microarray data. This project was funded by the BBSRC and the Scottish Executive Rural and Environment Research and Analysis Directorate. (Project Grants 15/S19602 and 15/S13964).


  1. Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L., and Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J.Virol., 78, 1858–1864PubMedCrossRefGoogle Scholar
  2. Brown, T.I., Mistry, R., Collie, D.D., Tate, S., and Sallenave, J.M., 2004. Trappin ovine molecule (TOM), the ovine ortholog of elafin, is an acute phase reactant in the lung. Physiol. Genomics, 19, 11–21PubMedCrossRefGoogle Scholar
  3. Budhia, S., Haring, L.F., McConnell, I., and Blacklaws, B.A., 2006. Quantitation of ovine cytokine mRNA by real-time RT-PCR. J. Immunol. Methods., 309, 160–172PubMedCrossRefGoogle Scholar
  4. Burnside, J., Neiman, P., Tang, J., Basom, R., Talbot, R., Aronszajn, M., Burt, D., and Delrow, J., 2005. Development of a cDNA array for chicken gene expression analysis. BMC Genomics, 6, 13PubMedCrossRefGoogle Scholar
  5. Burrells, C., 1985. Cellular and humoral elements of the lower respiratory tract of sheep. Immunological examination of cells and fluid obtained by bronchoalveolar lavage of normal lungs. Vet. Immunol. Immunopathol., 10, 225–243PubMedCrossRefGoogle Scholar
  6. Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., Hunkapiller, K., Jensen, R.V., Knight, C.R., Lee, K.Y., Ma, Y., Maqsodi, B., Papallo, A., Peters, E.H., Poulter, K., Ruppel, P.L., Samaha, R.R., Shi, L., Yang, W., Zhang, L., and Goodsaid, F.M., 2006. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol., 24, 1115–1122PubMedCrossRefGoogle Scholar
  7. Donaldson, L., Vuocolo, T., Gray, C., Strandberg, Y., Reverter, A., McWilliam, S., Wang, Y., Byrne, K., and Tellam, R., 2005. Construction and validation of a Bovine Innate Immune Microarray. BMC Genomics, 6, 135PubMedCrossRefGoogle Scholar
  8. Ebrahimi, B., Dutia, B.M., Roberts, K.L., Garcia-Ramirez, J.J., Dickinson, P., Stewart, J.P., Ghazal, P., Roy, D.J., and Nash, A.A., 2003. Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J. Gen. Virol., 84, 99–109PubMedCrossRefGoogle Scholar
  9. Eisen, M.B. and Brown, P.O., 1999. DNA arrays for analysis of gene expression. Methods. Enzymol., 303, 179–205PubMedCrossRefGoogle Scholar
  10. Entrican, G., Wilkie, R., McWaters, P., Scheerlinck, J., Wood, P.R., and Brown, J., 1999. Cytokine release by ovine macrophages following infection with Chlamydia psittaci. Clin. Exp. Immunol., 117, 309–315PubMedCrossRefGoogle Scholar
  11. Fernandez, d.M., I, Perez de la Lastra JM, Ayoubi, P., Naranjo, V., Kocan, K.M., Gortazar, C., and de la, F.J., 2007. Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer (Cervus elaphus hispanicus) naturally infected with Mycobacterium bovis. Dev. Comp. Immunol.,Google Scholar
  12. Hartmann, G. and Krieg, A.M., 1999. CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther., 6, 893–903PubMedCrossRefGoogle Scholar
  13. Jensen, K., Talbot, R., Paxton, E., Waddington, D., and Glass, E.J., 2006. Development and validation of a bovine macrophage specific cDNA microarray. BMC Genomics, 7, 224PubMedCrossRefGoogle Scholar
  14. Jensen, K., Paxton, E., Waddington, D., Talbot, R., Darghouth, M.A., and Glass, E.J., 2007. Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. Int. J. Parasitol., (Epub doi:10.1016/j.ijpara.2007.08.007)Google Scholar
  15. Keane, O.M., Zadissa, A., Wilson, T., Hyndman, D.L., Greer, G.J., Baird, D.B., McCulloch, A.F., Crawford, A.M., and McEwan, J.C., 2006. Gene expression profiling of naive sheep genetically resistant and susceptible to gastrointestinal nematodes. BMC Genomics, 7, 42PubMedCrossRefGoogle Scholar
  16. Levy, O., 2004. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol., 76, 909–925PubMedCrossRefGoogle Scholar
  17. Matthews, K., Bailey, S.L., Gossner, A.G., Watkins, C., Dalziel, R.G., and Hopkins, J., 2007. Gene gun-delivered pGM-CSF adjuvant induces enhanced emigration of two dendritic cell subsets from the skin. Scand. J. Immunol., 65, 221–229PubMedCrossRefGoogle Scholar
  18. McGuire, K. and Glass, E.J., 2005. The expanding role of microarrays in the investigation of macrophage responses to pathogens. Vet. Immunol. Immunopathol., 105, 259–275PubMedCrossRefGoogle Scholar
  19. McNeilly, T.N., Baker, A., Brown, J.K., Collie, D., Maclachlan, G., Rhind, S.M., and Harkiss, G.D., 2008. Role of alveolar macrophages in respiratory transmission of visna/maedi virus. J. Virol., 82, 1526–1536PubMedCrossRefGoogle Scholar
  20. Miron, M., Woody, O.Z., Marcil, A., Murie, C., Sladek, R., and Nadon, R., 2006. A methodology for global validation of microarray experiments. BMC Bioinformatics, 7, 333PubMedCrossRefGoogle Scholar
  21. Nalubamba, K.S., Gossner, A.G., Dalziel, R.G., and Hopkins, J., 2007. Differential expression of pattern recognition receptors in sheep tissues and leukocyte subsets. Vet. Immunol. Immunopathol., 118, 252–262PubMedCrossRefGoogle Scholar
  22. Nash, A.D., Barcham, G.J., Andrews, A.E., and Brandon, M.R., 1992. Characterisation of ovine alveolar macrophages: regulation of surface antigen expression and cytokine production. Vet. Immunol. Immunopathol., 31, 77–94PubMedCrossRefGoogle Scholar
  23. Nobis, W., Ren, X., Suchyta, S.P., Suchyta, T.R., Zanella, A.J., and Coussens, P.M., 2003. Development of a porcine brain cDNA library, EST database, and microarray resource. Physiol. Genomics, 16, 153–159PubMedCrossRefGoogle Scholar
  24. Norris, B.J., Bower, N.I., Smith, W.J.M., Cam, G.R., and Reverter, A., 2005. Gene expression profiling of ovine skin and wool follicle development using a combined ovine-bovine skin cDNA microarray. Aust. J. Exp. Agric., 45, 867–877CrossRefGoogle Scholar
  25. Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, e45PubMedCrossRefGoogle Scholar
  26. Schena, M., 2003. Microarray Analysis. John Wiley and Sons Inc., USAGoogle Scholar
  27. Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A., Baker, S.C., Collins, P.J., de, L.F., Kawasaki, E.S., Lee, K.Y., Luo, Y., Sun, Y.A., Willey, J.C., Setterquist, R.A., Fischer, G.M., Tong, W., Dragan, Y.P., Dix, D.J., Frueh, F.W., Goodsaid, F.M., Herman, D., Jensen, R.V., Johnson, C.D., Lobenhofer, E.K., Puri, R.K., Schrf, U., Thierry-Mieg, J., Wang, C., Wilson, M., Wolber, P.K., Zhang, L., Amur, S., Bao, W., Barbacioru, C.C., Lucas, A.B., Bertholet, V., Boysen, C., Bromley, B., Brown, D., Brunner, A., Canales, R., Cao, X.M., Cebula, T.A., Chen, J.J., Cheng, J., Chu, T.M., Chudin, E., Corson, J., Corton, J.C., Croner, L.J., Davies, C., Davison, T.S., Delenstarr, G., Deng, X., Dorris, D., Eklund, A.C., Fan, X.H., Fang, H., Fulmer-Smentek, S., Fuscoe, J.C., Gallagher, K., Ge, W., Guo, L., Guo, X., Hager, J., Haje, P.K., Han, J., Han, T., Harbottle, H.C., Harris, S.C., Hatchwell, E., Hauser, C.A., Hester, S., Hong, H., Hurban, P., Jackson, S.A., Ji, H., Knight, C.R., Kuo, W.P., LeClerc, J.E., Levy, S., Li, Q.Z., Liu, C., Liu, Y., Lombardi, M.J., Ma, Y., Magnuson, S.R., Maqsodi, B., McDaniel, T., Mei, N., Myklebost, O., Ning, B., Novoradovskaya, N., Orr, M.S., Osborn, T.W., Papallo, A., Patterson, T.A., Perkins, R.G., Peters, E.H., Peterson, R., Philips, K.L., Pine, P.S., Pusztai, L., Qian, F., Ren, H., Rosen, M., Rosenzweig, B.A., Samaha, R.R., Schena, M., Schroth, G.P., Shchegrova, S., Smith, D.D., Staedtler, F., Su, Z., Sun, H., Szallasi, Z., Tezak, Z., Thierry-Mieg, D., Thompson, K.L., Tikhonova, I., Turpaz, Y., Vallanat, B., Van, C., Walker, S.J., Wang, S.J., Wang, Y., Wolfinger, R., Wong, A., Wu, J., Xiao, C., Xie, Q., Xu, J., Yang, W., Zhang, L., Zhong, S., Zong, Y., and Slikker, W., Jr., 2006. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol., 24, 1151–1161PubMedCrossRefGoogle Scholar
  28. Tao, W., Mallard, B., Karrow, N., and Bridle, B., 2004. Construction and application of a bovine immune-endocrine cDNA microarray. Vet. Immunol. Immunopathol., 101, 1–17PubMedCrossRefGoogle Scholar
  29. Turnbull, I.R., McDunn, J.E., Takai, T., Townsend, R.R., Cobb, J.P., and Colonna, M., 2005. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J. Exp. Med., 202, 363–369PubMedCrossRefGoogle Scholar
  30. Weiss, D.J., Evanson, O.A., Moritz, A., Deng, M.Q., and Abrahamsen, M.S., 2002. Differential responses of bovine macrophages to Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium. Infect. Immun., 70, 5556–5561PubMedCrossRefGoogle Scholar
  31. Yao, J., Burton, J.L., Saama, P., Sipkovsky, S., and Coussens, P.M., 2001. Generation of EST and cDNA microarray resources for the study of bovine immunobiology. Acta Vet. Scand., 42, 391–405PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Craig Watkins
    • 1
    • 3
  • Annie McKellar
    • 1
  • Kirsty Jensen
    • 2
  • Abraham George
    • 1
  • Doug Jones
    • 1
  • Michael J. Sharp
    • 1
    • 4
  • Karen Stevenson
    • 1
  • John Hopkins
    • 3
  1. 1.Moredun Research InstituteMidlothianUK
  2. 2.Roslin Institute & Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
  3. 3.Centre for Infectious Disease, Royal (Dick) School of Veterinary Studies (R(D)SVS)University of EdinburghEdinburghUK
  4. 4.Veterinary Laboratory AgencyMidlothianUK

Personalised recommendations