Veterinary Research Communications

, Volume 32, Issue 5, pp 341–356 | Cite as

DNA vaccines and their applications in veterinary practice: current perspectives

  • K. DhamaEmail author
  • Mahesh Mahendran
  • P. K. Gupta
  • A. Rai
Review Article


Inoculation of plasmid DNA, encoding an immunogenic protein gene of an infectious agent, stands out as a novel approach for developing new generation vaccines for prevention of infectious diseases of animals. The potential of DNA vaccines to act in presence of maternal antibodies, its stability and cost effectiveness and the non-requirement of cold chain have heightened the prospects. Even though great strides have been made in nucleic acid vaccination, still there are many areas that need further research for its wholesome practical implementation. Major areas of concern are vaccine delivery, designing of suitable vectors and cytotoxic T cell responses. Also, the induction of immune responses by DNA vaccines is inconclusive due to the lack of knowledge regarding the concentration of the protein expressed in vivo. Alternative delivery systems having higher transfection efficiency and the use of cytokines, as immunomodulators, needs to be further explored. Recently, efforts are being made to modulate and prolong the active life of dendritic cells, in order to make antigen presentation a more efficacious one. For combating diseases like acquired immunodeficiency syndrome (AIDS), influenza, malaria and tuberculosis in humans; and foot and mouth disease, Aujesky’s disease, swine fever, rabies, canine distemper and brucellosis in animals, DNA vaccine clinical trials are underway. This review highlights the salient features of DNA vaccines, and measures to enhance their efficacy so as to devise an effective and novel vaccination strategy against animal diseases.


Animal diseases Cytokines DNA vaccines Recombinant vaccines Vaccination Veterinary vaccines 



antigen presenting cell


cytosine guanosine motifs


cytotoxic T lymphocytes


cluster of differentiation or canine distemper


cell mediated immunity




deoxyribonucleic acid


granulocyte monocyte colony stimulating factor






major histocompatibility antigen


outer membrane protein


open reading frame


  1. Andrew, M., Morris, K., Coupar, B., Sproat, K., Oke, P., Bruce, M., Broadway, M., Morrissy, C. and Strom, D., 2006. Porcine interleukin-3 enhances DNA vaccination against classical swine fever. Vaccine, 24, 3241–3247PubMedCrossRefGoogle Scholar
  2. Babiuk, L.A., Pontarollo, R., Babiuk, S., Loehr, B. and van Drunen Littel-van den Hurk, S., 2003. Induction of immune responses by DNA vaccines in large animals. Vaccine, 21, 649–658PubMedCrossRefGoogle Scholar
  3. Babiuk, S., Tsang, C., van Drunen Littel-van den Hurk, S., Babiuk, L.A. and Griebel, P.J., 2007. A single HBsAg DNA vaccination in combination with electroporation elicits long-term antibody responses in sheep. Bioelectrochemistry, 70, 269–274PubMedCrossRefGoogle Scholar
  4. Barnes, A.G., Barnfield, C., Brew, R. and Klavinskis, L.S., 2000. Recent developments in mucosal delivery of plasmid DNA vaccines. Current Opinions in Molecular Therapy, 2, 87–93Google Scholar
  5. Benvenisti, L., Rogel, A., Kuznetzova, L., Bujanover, S., Becker, Y. and Stram, Y., 2001. Gene gun-mediate DNA vaccination against foot-and-mouth disease virus. Vaccine, 19, 3885-3895PubMedCrossRefGoogle Scholar
  6. Brandsma, J.L., 2006. DNA vaccine design. Methods in Molecular Medicine, 127, 3–10PubMedGoogle Scholar
  7. Brillowska, A., Dabrowski, S., Rulka, J., Kubis, P., Buzala, E. and Kur, J., 1999. Protection of cattle against bovine leukemia virus (BLV) infection could be attained by DNA vaccination. Acta Biochemistry Poland, 46, 971–976Google Scholar
  8. Cai, H., Yu, D.H., Hu, X.D., Li, S.X. and Zhu, Y.X., 2006. A combined DNA vaccine-prime, BCG-boost strategy results in better protection against Mycobacterium bovis challenge. DNA Cell Biology, 25, 438–447CrossRefGoogle Scholar
  9. Castrucci, G., Ferrari, M., Salvatori, D., Sardonini, S., Frigeri, F., Petrini, S., Lo Dico, M., Marchini, C., Rotola, A., Amici, A., Provinciali, M., Tosini, A., Angelini, R. and Cassai, E., 2005. Vaccination trials against bovine herpesvirus-1. Veterinary Research Communications, 29, 229–231PubMedCrossRefGoogle Scholar
  10. Chambers, M.A., Vordermeier, H., Whelan, A., Commander, N., Tascon, R., Lowrie, D. and Hewinson, R.G., 2000. Vaccination of mice and cattle with plasmid DNA encoding the Mycobacterium bovis antigen MPB83. Clinical Infectious Diseases, 30, 283–287CrossRefGoogle Scholar
  11. Chaplin, P.J., De Rose, R., Boyle, J.S., McWaters, P., Kelly, J., Tennent, J.M., Lew, A.M. and Scheerlinck, J.P., 1999. Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infection and Immunity, 67, 6434–6348PubMedGoogle Scholar
  12. Cheevers, W.P., Snekvik, K.R., Trujillo, J.D., Kumpula-McWhirter, N.M., Pretty On Top, K.J. and Knowles, D.P., 2003. Prime-boost vaccination with plasmid DNA encoding caprine-arthritis encephalitis lentivirus env and viral SU suppresses challenge virus and development of arthritis. Virology, 306, 116–125PubMedCrossRefGoogle Scholar
  13. Chen, A.Y., Fry, S.R., Forbes-Faulkner, J., Daggard, G. and Mukkur, T.K., 2006. Evaluation of the immunogenicity of the P97R1 adhesin of Mycoplasma hyopneumoniae as a mucosal vaccine in mice. Journal of Medical Microbiology, 55, 923–929PubMedCrossRefGoogle Scholar
  14. Cho, S.H., Loewen, P.C. and Marquardt, R.R., 2004. A plasmid DNA encoding chicken interleukin-6 and Escherichia coli K88 fimbrial protein FaeG stimulates the production of anti-K88 fimbrial antibodies in chickens. Poultry Science, 83, 1973–1978PubMedGoogle Scholar
  15. Dai, B., You, Z., He, P., Wang, M. and Wang, Y., 2003. Analysis of CpG motifs in endoflagellar gene (flaB2) and expression vector (VR1012) of leptospiral DNA vaccine. Sichuan Da Xue Xue Bao Yi Xue Ban, 34, 1–4PubMedGoogle Scholar
  16. Daudel, D., Weidinger, G. and Spreng, S., 2007. Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Review in Vaccines, 6, 97–110CrossRefGoogle Scholar
  17. de Andrade, G.M., Machado, R.Z., Vidotto, M.C. and Vidotto, O., 2004. Immunization of bovines using a DNA vaccine prepared from the Jaboticabal strain of Anaplasma marginale. Annals of New York Academy of Science, 1026, 257–266CrossRefGoogle Scholar
  18. De Rose, R., McKenna, R.V., Cobon, G., Tennent, J., Zakrzewski, H., Gale, K., Wood, P.R., Scheerlinck, J.P. and Willadsen, P., 1999. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep. Veterinary Immunology and Immunopathology, 71, 151–160PubMedCrossRefGoogle Scholar
  19. Dhama, K., Singh, S.D., Mahendran, M. and Tomar, S., 2006. Immunity and disease resistance strategies in poultry: current and future prospects. Lead Paper presented in National Seminar on Poultry Research Priorities to 2020, Nov., 2006 at Central Avian Research Institute, Izatnagar (U.P.), India. Souvenir, pp, 200–211Google Scholar
  20. Dhama, K., Chauhan, R.S., Mahendran, M. and Singhal, L., 2007. DNA vaccines and prevention of infectious diseases in bovines: A Review. International Journal of Cow Science, 3, 1–12Google Scholar
  21. Ding, X., Lillehoj, H.S., Dalloul, R.A., Min, W., Sato, T., Yasuda, A. and Lillehoj, E.P., 2005. In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis. Vaccine, 23, 3733–3740PubMedCrossRefGoogle Scholar
  22. Dong, J.J., Wang, Y.L., Zhang, Y.G., Fu, X.P., Pan, L., Fang, Y.Z., Jiang, S.T., Wang, B.Q. and Wang, W.X., 2005. Construction of recombinant plasmid with VP1 genes against Asia I FMDV and elementary analysis of its immunological activity. Chinese Journal of Veterinary Science and Technology, 35, 461–464Google Scholar
  23. Dory, D., Beven, V., Torche, A.M., Bougeard, S., Cariolet, R. and Jestin, A., 2005. CpG motif in ATCGAT hexamer improves DNA-vaccine efficiency against lethal Pseudorabies virus infection in pigs. Vaccine, 23, 4532–4540PubMedCrossRefGoogle Scholar
  24. Drew, D.R., Lightowlers, M. and Strugnell, R.A., 2000. Humoral immune responses to DNA vaccines expressing secreted, membrane bound and non-secreted forms of the Taenia ovis 45W antigen. Vaccine, 18, 2522–2532PubMedCrossRefGoogle Scholar
  25. Dunham, S.P., 2002. The application of nucleic acid vaccines in veterinary medicine. Research in Veterinary Science, 73, 9–16PubMedCrossRefGoogle Scholar
  26. Fu, T.M., Ulmer, J.B., Caulfield, M.J., 1997. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen-presenting cells and evidence for antigen transfer from myocytes. Molecular Medicine, 3, 362–371PubMedGoogle Scholar
  27. Fukumoto, S., Tamaki, Y., Okamura, M., Bannai, H., Yokoyama, N., Suzuki, T., Igarashi, I., Suzuki, H. and Xuan, X., 2007. Prime-boost immunization with DNA followed by a recombinant vaccinia virus expressing P50 induced protective immunity against Babesia gibsoni infection in dogs. Vaccine, 25, 1334–1341PubMedCrossRefGoogle Scholar
  28. Gerdts, V., Jons, A. and Mettenleiter, T.C., 1999. Potency of an experimental DNA vaccine against Aujeszky's disease in pigs. Veterinary Microbiology, 66, 1–13PubMedCrossRefGoogle Scholar
  29. Giese, M., Bahr, U., Jakob, N.J., Kehm, R., Handermann, M., Muller, H., Vahlenkamp, T.H., Spiess, C., Schneider, T.H., Schusse, G. and Darai, G., 2002. Stable and long-lasting immune response in horses after DNA vaccination against equine arteritis virus. Virus Genes, 25, 159–167PubMedCrossRefGoogle Scholar
  30. Grubman, M.J., 2005. Development of novel strategies to control foot-and-mouth disease: marker vaccines and antivirals. Biologicals, 33, 227–234PubMedCrossRefGoogle Scholar
  31. Guo, A., Jin, Z., Zheng, Y., Hai, G., Yuan, G., Li, H. and Cai, X., 2007. Induction of protection against porcine cysticercosis in growing pigs by DNA vaccination. Vaccine, 25, 170–175PubMedCrossRefGoogle Scholar
  32. Gupta, P.K., Saini, M., Gupta, L.K., Rao, V.D., Bandyopadhyay, S.K., Butchaiah, G., Garg, G.K. and Garg, S.K., 2001. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Veterinary Microbiology, 78, 293–305PubMedCrossRefGoogle Scholar
  33. Gupta, P.K., Rai, A., Rai, N., Raut, A. and Chauhan, S., 2005a. Cloning of canine parvovirus VP2 gene and its use as DNA vaccine in dogs. Current Science, 88, 778–782Google Scholar
  34. Gupta, P.K., Rai, A., Rai, N. and Saini, M., 2005b. Immunogenicity of a recombinant plasmid DNA containing glycoprotein gene of rabies virus CVS. Journal of Immunology and Immunopathology, 7, 58–61Google Scholar
  35. Gupta, P.K., Sharma, S., Walunj, S.S., Patil, A.A., Rai, A. and Saini, M., 2006. A DNA vaccine that encodes rabies virus glycoprotein lacking transmembrane domain enhances antibody response but not protection. Acta Virologica, 50, 87–92PubMedGoogle Scholar
  36. Gupta, V.K., Rout, P.K. and Vihan, V.S., 2007. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M. Research in Veterinary Science, 82, 305–313PubMedCrossRefGoogle Scholar
  37. Gurunathan, S., Klinman, D.M. and Seder, R.A., 2000. DNA vaccines: immunology, application, and optimization. Annual Reviews in Immunology, 18, 927–974CrossRefGoogle Scholar
  38. Hahn, U.K., Aichler, M., Boehm, R. and Beyer, W., 2006. Comparison of the immunological memory after DNA vaccination and protein vaccination against anthrax in sheep. Vaccine, 24, 4595–4597PubMedCrossRefGoogle Scholar
  39. Hall, R.A. and Khromykh, A.A., 2004. West Nile virus vaccines. Expert Opinion in Biology and Therapy, 4, 1295–1305CrossRefGoogle Scholar
  40. Huygen, K., 2003. On the use of DNA vaccines for the prophylaxis of mycobacterial diseases. Infection and Immunity, 71, 1613–1621PubMedCrossRefGoogle Scholar
  41. Ito, Y., 1960. A tumor reducing factor extracted by phenol from papillomatous tissue of cotton tail rabbits. Virology, 12, 596PubMedCrossRefGoogle Scholar
  42. Jain, P., Singh, R.K., Gupta, P.K., Jain, S., Kumar, S. and Tiwari, A.K., 2007. Hemagglutinin (H) gene of canine distemper virus cloned in pTargeT mammalian expression vector induces neutralizing antibody response in dogs. Indian Journal of Virology, 18, 13–16Google Scholar
  43. Jiang, W., Baker, H.J., Swango, L.J., Schorr, J., Self, M.J. and Smith, B.F., 1998. Nucleic acid immunization protects dogs against challenge with virulent canine parvovirus. Vaccine, 16, 601–607PubMedCrossRefGoogle Scholar
  44. Jiang, L., Qian, F., He, X., Wang, F., Ren, D., He, Y., Li, K., Sun, S. and Yin, C., 2007. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. Journal of Gene and Medicine, 9, 253–264CrossRefGoogle Scholar
  45. Jin, H., Kang, Y., Xiao, C., Zhu, K., Ma, Y., Xie, Q., Ma, J., Xie, Q., He, C., Yang, Z., Sun, Z., Zhang, X., Chen, M., Zhang, F. and Wang, B., 2005. DNA prime followed by protein boost enhances neutralization and Th1 type immunity against FMDV. Viral Immunology, 18, 539–548PubMedCrossRefGoogle Scholar
  46. Kodihalli, S., Kobasa, D.L. and Webster, R.G., 2000. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine, 18, 2592–2599PubMedCrossRefGoogle Scholar
  47. Krieg, A.M., 2002. CpG motifs in bacterial DNA and their immune effects. Annual Reviews Immunology, 20, 709–760CrossRefGoogle Scholar
  48. Kurar, E. and Splitter, G.A., 1997. Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine, 15, 1851–1857PubMedCrossRefGoogle Scholar
  49. Lee, C.W., Senne, D.A. and Suarez, D.L., 2004. Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza. Vaccine, 22, 3175–3181PubMedCrossRefGoogle Scholar
  50. Li, L., Fang, W.H., Li, J.R., Fang, L., Huang, Y.W. and Yu, L., 2006. Oral DNA vaccination with polyprotein gene of IBDV delivered by attenuated Salmonella elicits protective immune response in chickens. Vaccine, 24, 5919–5927PubMedCrossRefGoogle Scholar
  51. Li, N., Qiu, H.J., Zhao, J.J., Li, Y., Wang, M.J., Lu, B.W., Han, C.G., Hou, Q., Wang, Z.H., Gao, H., Peng, W.P., Li, G.X., Zhu, Q.H. and Tong, G.Z., 2007. A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine, 25, 2907–2912PubMedCrossRefGoogle Scholar
  52. Liang, R., van den Hurk, J.V., Babiuk, L.A. and van Drunen Littel-van den Hurk, S., 2006. Priming with DNA encoding E2 and boosting with E2 protein formulated with CpG oligodeoxynucleotides induces strong immune responses and protection from Bovine viral diarrhea virus in cattle. Journal of General Virology, 87, 2971–2982PubMedCrossRefGoogle Scholar
  53. Liu, M.A., 2003. DNA vaccines: a review. Journal of Internal Medicine, 253, 402–410PubMedCrossRefGoogle Scholar
  54. Liu, M.A., Wahren, B. and Karlsson Hedestam, G.B., 2006. DNA vaccines: recent developments and future possibilities. Human Gene Therapy, 17, 1051–1061PubMedCrossRefGoogle Scholar
  55. Loehr, B.I., Rankin, R., Pontarollo, R., King, T., Willson, P., Babiuk, L.A. and van Drunen Littel-van den Hurk, S., 2001. Suppository-mediated DNA immunization induces mucosal immunity against bovine herpesvirus-1 in cattle. Virology, 289, 327–333PubMedCrossRefGoogle Scholar
  56. Loke, C.F., Omar, A.R., Raha, A.R. and Yusoff, K., 2005. Improved protection from velogenic Newcastle disease virus challenge following multiple immunizations with plasmid DNA encoding for F and HN genes. Veterinary Immunology and Immunopathology, 106, 259–267PubMedCrossRefGoogle Scholar
  57. Lunn, D.P., Soboll, G., Schram, B.R., Quass, J., McGregor, M.W., Drape, R.J., Macklin, M.D., McCabe, D.E., Swain, W.F. and Olsen, C.W., 1999. Antibody responses to DNA vaccination of horses using the influenza virus hemagglutinin gene. Vaccine, 17, 2245–2258PubMedCrossRefGoogle Scholar
  58. Manoj, S., Babiuk, L.A. and van Drunen Littel-van den Hurk, S., 2004a. Approaches to enhance the efficacy of DNA vaccines. Critical Reviews in Clinical Laboratory Science, 17, 1–39CrossRefGoogle Scholar
  59. Manoj, S., Griebel, P.J., Babiuk, L.A. and van Drunen Littel-van den Hurk, S., 2004b. Modulation of immune responses to bovine herpesvirus-1 in cattle by immunization with a DNA vaccine encoding glycoprotein D as a fusion protein with bovine CD154. Immunology, 112, 328–338PubMedCrossRefGoogle Scholar
  60. Min, W., Lillehoj, H.S., Bumside, J., Wcining, K.C., Staehcli, P. and Zhu, J.J., 2001. Adjuvant effects of IL-l beta, IL-2, IL-8, 1L- 15, IFN-alpha, IFN-gamma TGF-beta and lymphotactin in DNA vaccination against Eimeria acervulina. Vaccine, 20, 267–274PubMedCrossRefGoogle Scholar
  61. Minke, J.M., Fischer, L., Baudu, P., Guigal, P.M., Sindle, T., Mumford, J.A. and Audonnet, J.C., 2006. Use of DNA and recombinant canarypox viral vectors for equine herpes virus vaccination. Veterinary Immunology and Immunopathology, 111, 47–57PubMedCrossRefGoogle Scholar
  62. Niborski, V., Li, Y., Brennan, F., Lane, M., Torche, A.M., Remond, M., Bonneau, M., Riffault, S., Stirling, C., Hutchings, G., Takamatsu, H., Barnett, P., Charley, B. and Schwartz-Cornil, I., 2006. Efficacy of particle-based DNA delivery for vaccination of sheep against FMDV. Vaccine, 24, 7204–7213PubMedCrossRefGoogle Scholar
  63. Nobiron, I., Thompson, I., Brownlie, J. and Collins, M.E., 2003. DNA vaccination against bovine viral diarrhoea virus induces humoral and cellular responses in cattle with evidence for protection against viral challenge. Vaccine, 21, 2082–2092PubMedCrossRefGoogle Scholar
  64. Nour El-Din, A.N., Shkreta, L., Talbot, B.G., Diarra, M.S. and Lacasse, P., 2006. DNA immunization of dairy cows with the clumping factor A of Staphylococcus aureus. Vaccine, 24, 1997–2006PubMedCrossRefGoogle Scholar
  65. Olsen, C.W., 2000. DNA vaccination against influenza viruses: a review with emphasis on equine and swine influenza. Veterinary Microbiology, 74, 149–164PubMedCrossRefGoogle Scholar
  66. Oshop, G.L., Elankumaran, S. and Heckert, R.A., 2002. DNA vaccination in avian. Veterinary Immunology and Immunopathology, 89, 1–12PubMedCrossRefGoogle Scholar
  67. Patial, S., Chaturvedi, V.K., Rai, A., Saini, M., Chandra, R., Saini, Y. and Gupta, P.K., 2007. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2. Vaccine, 25, 4020–4028PubMedCrossRefGoogle Scholar
  68. Peng, B., Zhao, Y., Xu, L. and Xu, Y., 2007. Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine, 25, 2064–2073PubMedCrossRefGoogle Scholar
  69. Rai, N., Kaushik, P. and Rai, A., 2005. Development of rabies DNA vaccine using a recombinant plasmid. Acta Virologica, 49, 207–210PubMedGoogle Scholar
  70. Rivers, R., Andrews, E., Gonzalez, S.A., Donoso, G. and Onate, A., 2006. Brucella abortus: immunity, vaccines and prevention strategies based on nucleic acids. Archives Medicine Veterinaria, 38, 7–18Google Scholar
  71. Ruiz, L.M., Orduz, S., Lopez, E.D., Guzman, F., Patarroyo, M.E. and Armengol, G., 2007. Immune response in mice and cattle after immunization with a B. microplus DNA vaccine containing bm86 gene. Veterinary Parasitology, 144, 138–145PubMedCrossRefGoogle Scholar
  72. Sagodira, S., Buzoni-Gatel, D., Iochmann, S., Naciri, M. and Bout, D., 1999. Protection of kids against C. parvum infection after immunization of dams with CP15-DNA. Vaccine, 174, 2346–2355PubMedCrossRefGoogle Scholar
  73. Sechi, L.A., Mara, L., Cappai, P., Frothingam, R., Ortu, S., Leoni, A., Ahmed, N. and Zanetti, S., 2006. Immunization with DNA vaccines encoding different mycobacterial antigens elicits a Th1 type immune response in lambs and protects against Mycobacterium avium subspecies paratuberculosis infection. Vaccine, 24, 229–235PubMedCrossRefGoogle Scholar
  74. Senthil Kumar, N., Kataria, J.M., Dhama, K., Bhardwaj, N., Sylvester, S.A. and Rahul, S., 2004. Development of DNA vaccine against chicken anemia virus simultaneously using it’s VP1 and VP2 proteins. Paper Presented in XII Conference of IPSA and National Symposium, April 7-9, 2004 at Himachal Pradesh Krishi Vishwavidalya, Palampur. pp: 152.Google Scholar
  75. Seo, S.H., Wang, L., Smith, R. and Collisson, E.W., 1997. The carboxyl-terminal 120-residue polypeptide of IB virus nucleocapsid induces CTLs and protects chickens from acute infection. Journal of Virology, 71, 7889–7894PubMedGoogle Scholar
  76. Shams, H., 2005. Recent developments in veterinary vaccinology. Veterinary Journal, 170, 289–299CrossRefGoogle Scholar
  77. Shao, H.J., Chen, L. and Su, Y.B., 2005. DNA Fragment Encoding Human IL-1β 163-171 Peptide Enhances the Immune Responses Elicited in Mice by DNA Vaccine against Foot-and-Mouth Disease. Veterinary Research Communications, 29, 35–46PubMedCrossRefGoogle Scholar
  78. Sharma, A.K. and Khuller, G.K., 2001. DNA vaccines: future strategies and relevance to intracellular pathogens. Immunology and Cell Biology, 79, 537–546PubMedCrossRefGoogle Scholar
  79. Shi, F., Zhang, Y., Ye, P., Lin, J., Cai, Y., Shen, W., Bickle, Q.D. and Taylor, M.G., 2001. Laboratory and field evaluation of Schistosoma japonicum DNA vaccines in sheep and water buffalo in China. Vaccine, 20, 462–467PubMedCrossRefGoogle Scholar
  80. Sixt, N., Cardoso, A., Vallier, A., Fayolle, J., Buckland, R. and Wild, T.F., 1998. CD virus DNA vaccination induces humoral and cellular immunity and protects against a lethal intracerebral challenge. Journal of Virology, 72, 8472–8476PubMedGoogle Scholar
  81. Stevenson, F.K., 2004. DNA vaccines and adjuvants. Immunological Reviews, 199, 5–8PubMedCrossRefGoogle Scholar
  82. Suradhat, S., Yoo, D., Babiuk, L.A., Griebel, P. and Baca-Estrada, M.E., 1997. DNA immunization with a bovine rotavirus VP4 gene induces a Th1-like immune response in mice. Viral Immunology, 10, 117–127PubMedGoogle Scholar
  83. Teixeira, F.M., Teixeira, H.C., Ferreira, A.P., Rodrigues, M.F., Azevedo, V., Macedo, G.C. and Oliveira, S.C., 2006. DNA vaccine using M. bovis Ag85B antigen induces partial protection against experimental infection in BALB/c mice. Clinical Vaccine Immunology, 13, 930–935CrossRefGoogle Scholar
  84. Tsen, S.W., Paik, A.H., Hung, C.F. and Wu, T.C., 2007. Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert Reviews on Vaccines, 6, 227–239CrossRefGoogle Scholar
  85. Ulmer, J.B., Wahren, B. and Liu, M.A., 2006. DNA vaccines: recent technological and clinical advances. Discovery in Medicine, 6, 109–112Google Scholar
  86. van Rooij, E.M., Haagmans, B.L., De Visser, Y.E., De Bruin, M.G.M., Boersma, W. and Bianchi, A.T.J., 1998. Effect of vaccination route and composition of DNA vaccine on the induction of protective immunity against psuedorabies infection in pigs. Veterinary Immunology and Immunopathology, 66, 113–126PubMedCrossRefGoogle Scholar
  87. Vanniasinkam, T., Barton, M.D. and Heuzenroeder, M.W., 2005. Immune response to vaccines based upon the VapA protein of the horse pathogen, Rhodococcus equi, in a murine model. International Journal of Medical Microbiology, 294, 437–445PubMedCrossRefGoogle Scholar
  88. Vanrompay, D., Cox, E., Kaiser, P., Lawson, S., Van Loock, M., Volckaert, G. and Goddeeris, B., 2001. Protection of turkeys against C. psittaci challenge by parenteral and mucosal inoculations and the effect of turkey interferon-gamma on genetic immunization. Immunology, 103, 106–112PubMedCrossRefGoogle Scholar
  89. Wang, F., He, X.W., Jiang, L., Ren, D., He, Y., Li, D.A. and Sun, S.H., 2006. Enhanced immunogenicity of microparticulated multiepitope DNA vaccine encoding T and B cell epitopes of foot and mouth disease virus in mice. Vaccine, 24, 2017–2026PubMedCrossRefGoogle Scholar
  90. Wienhold, D., Armengol, E., Marquardt, A., Marquardt, C., Voigt, H., Buttner, M., Saalmuller, A. and Pfaff, E., 2005. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Veterinary Research, 36, 571–587PubMedCrossRefGoogle Scholar
  91. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A. and Felgner, P.L., 1990. Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468PubMedCrossRefGoogle Scholar
  92. Wong, H.T., Cheng, S.C., Sin, F.W., Chan, E.W., Sheng, Z.T. and Xie, Y., 2002. A DNA vaccine against FMD elicits an immune response in swine which is enhanced by co-administration with interleukin-2. Vaccine, 20, 2641–2647PubMedCrossRefGoogle Scholar
  93. Xiang, Z.Q., Spitalnik, S., Tran, M., Wunner, W.H., Cheng, J. and Ertl, H.C., 1994. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology, 199, 132–140PubMedCrossRefGoogle Scholar
  94. Yang, X., Hudson, M., Walters, N., Bargatze, R.F. and Pascual, D.W., 2005. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infection and Immunity, 73, 7297–7303PubMedCrossRefGoogle Scholar
  95. Zheng, C., Babiuk, L.A. and van Drunen Littel-van den Hurk, S., 2005. Bovine herpesvirus 1 VP22 enhances the efficacy of a DNA vaccine in cattle. Journal of Virology, 79, 1948–1953PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • K. Dhama
    • 1
    Email author
  • Mahesh Mahendran
    • 1
  • P. K. Gupta
    • 2
  • A. Rai
    • 2
  1. 1.Division of PathologyIndian Veterinary Research InstituteIzatnagarIndia
  2. 2.Division of Veterinary BiotechnologyIndian Veterinary Research InstituteIzatnagarIndia

Personalised recommendations