Advertisement

Veterinary Research Communications

, Volume 32, Issue 1, pp 93–106 | Cite as

Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers

  • David J. BraydenEmail author
  • Joanna Griffin
Original Article

Abstract

Fluxes of the anti-parasitic agents, [3H]-ivermectin, [3H]-selamectin and [3H]-moxidectin were studied across non-transfected and transfected canine kidney epithelial monolayers, MDCK II/wt, MDCK II-MDR1, MDCK II-MRP1 and MDCK II-MRP2. All four lines surprisingly expressed significant levels of P-glycoprotein (P-gp), coded for by MDR1, but MDCK II-MDR1 expressed increased levels compared to the other lines. MDCK II-MRP1 and MDCK II-MRP2 expressed increased levels of MRP1 and MRP2 respectively. Fluxes of [3H]-ivermectin, [3H]-selamectin, [3H]-moxidectin, and the P-gp substrates, rhodamine-123 and DiOC2, were polarized in the basolateral-to-apical (secretory) direction across the four lines. Selected MRP inhibitors used in relevant pharmacological concentrations did not block the secretory fluxes of either [3H]-ivermectin or [3H]-selamectin in either the non-transfected or MRP-transfected lines. In contrast, secretory fluxes of ivermectin and selamectin were inhibited in all four lines by the P-gp inhibitor, verapamil. These data confirm that ivermectin and selamectin are substrates for P-gp in four additional cell lines, but suggest that they are not significant substrates for MRP1 or MRP2 where there is background expression of P-gp. Since this pattern of expression also pertains on the blood-brain barrier, it is unlikely that MRP1 and MRP2 play a significant role in ivermectin and selamectin blood: brain distribution in vivo.

Keywords

Blood-brain barrier Ivermectin Multidrug-resistance associated proteins P-glycoprotein efflux Selamectin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, A.I., Merino, G., Molina, A.J., Pulido, M.M., McKellar, Q.A. and Prieto, J.G., 2006. Role of ABC transporters in veterinary drug research and parasite resistance. Current Trends in Drug Delivery 3, 199–206.CrossRefGoogle Scholar
  2. Bakos, E., Evers, R., Szakacs, G., Tusnady, G.E., Welker, E., Szabo, K., de Haas, M., van Deemter, L., Borst, P., Varadi, A. and Sarkadi, B., 1998. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. Journal of Biological Chemistry 273, 32167–32175.PubMedCrossRefGoogle Scholar
  3. Bishop, B.F., Bruce, C.I., Evans, N.A., Goudie, A.C., Gration, K.A.F., Gibson, S.P., Pacey, M.S., Perry, D.A., Walshe, N.D.A. and Witty, M.J., 2000. Selamectin: a novel broad-spectrum endectocide for dogs and cats. Veterinary Parasitology 91, 163–176.PubMedCrossRefGoogle Scholar
  4. Bloomquist, J.R., 2003. Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology 54, 145–156.PubMedCrossRefGoogle Scholar
  5. Borst, P., Evers, R, Kool, M. and Wijnholds, J., 1999. The multidrug resistance protein family. Biochimica Biophysica Acta 1461, 347–357.CrossRefGoogle Scholar
  6. Campbell, W.C. and Benz, G.W., 1984. Ivermectin, a review of efficacy and safety. Journal of Veterinary Pharmacology and Therapeutics 7, 1–16.PubMedGoogle Scholar
  7. Chaudhary, P.M., Metchener, E.B. and Roninson, I.B., 1992. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 80, 2735–2739.PubMedGoogle Scholar
  8. Cole, S.C. and Deeley, R.G., 2006. Transport of glutathione and glutathione conjugates by MRP1. Trends in Pharmacological Science 27, 438–446.CrossRefGoogle Scholar
  9. Conrad, S., Vietelhaus, A., Orzechowski, A., Hoogstraate, J., Gjellan, K., Schrenk, D. and Kauffmann, H.M., 2001. Sequencing and tissue distribution of the canine MRP2 gene compared with MRP1 and MDR1. Toxicology 156, 81–91.PubMedCrossRefGoogle Scholar
  10. Cordon-Cardo, C., O’Brien, J.P., Casals, D., Rittman-Grauer, L., Biedler, J.L., Melamed, M.R. and Bertino, J.R., 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proceedings of the National Academy of Sciences USA 86, 695–698.CrossRefGoogle Scholar
  11. Dai, H., Marbach, P., Lemaire, M., Hayes, M. and Elmquist, W.F., 2003. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. Journal of Pharmacology and Experimental Therapeutics 304, 1085–1092.PubMedCrossRefGoogle Scholar
  12. Deeley, R.G., Westlake, C. and Cole, S.P., 2006. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiological. Reviews 86, 849–899.PubMedCrossRefGoogle Scholar
  13. De Jong, M.C., Scheffer, G.L., Broxterman, H.J., Hooijberg, J.H., Slootstra, J.W., Meloen, R.H., Kreitman, R.J., Husain, S.R., Joshi, B.H., Puri, R.K. and Scheper, R.J., 2003. Multidrug-resistant tumor cells remain sensitive to a recombinant interleukin-4-Pseudomonas exotoxin, except when over-expressing the multidrug resistance protein MRP1. Clinical Cancer Research 9, 5009–5017.PubMedGoogle Scholar
  14. Didier, A. and Loor, F., 1996. The abamectin derivative ivermectin is a potent P-glycoprotein inhibitor. Anticancer Drugs 7, 745–751.PubMedCrossRefGoogle Scholar
  15. Dupuy, J., Lespine, A., Sutra, J.F. and Alvinerie, M., 2006. The interaction between moxidectin and MDR transporters in primary cultures of rat hepatocytes. Journal of Veterinary Pharmacology and Therapeutics 29, 107–111.PubMedCrossRefGoogle Scholar
  16. Englund, G., Rorsman, F., Ronnblom, A., Karlbom, U., Lazarovam L., Grasjo, J., Kindmark, A. and Artursson, A., 2006. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. European Journal of Pharmaceutical Sciences doi:  10.1016/j.ejps.2006.04.010.
  17. Eisenblatter, T. and Galla, H.J., 2002. A new multidrug resistance protein at the blood-brain barrier. Biochemica Biophysica Research Communications 293, 1273–1278.CrossRefGoogle Scholar
  18. Fernandez, S.B., Hollo, Z., Kern, A, Bakos, E., Fischer, P.A., Borst, P. and Evers, R., 2002. Role of the N-terminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells. Journal of Biological Chemistry 277, 31048–31055.PubMedCrossRefGoogle Scholar
  19. Keogh, J.P. and Kunta, J.R., 2006. Development, validation and utility of an in vitro technique for assessment of potential clinical drug-drug interactions involving P-glycoprotein. European Journal of Pharmaceutical Sciences 27, 543–554.PubMedCrossRefGoogle Scholar
  20. Gao, B., Steiger, B., Noe, B., Fritschy, J.M. and Meier, P.J., 1999. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. Journal of Histochemistry and Cytochemistry 47, 1255–1264.PubMedGoogle Scholar
  21. Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R.D., Lindmark, T., Mabondzo, A., Nilsson, J.E., Raub, T.J., Stanimirovic, D., Terasaki, T., Oberg, J.O. and Osterberg, T., 2005. In vitro models for the blood-brain barrier. Toxicology In Vitro 19, 299–334.PubMedCrossRefGoogle Scholar
  22. Gokbulut, C., Karademir, U., Boyacioglu, M. and McKellar, Q.A., 2006. Comparative plasma dispositions of ivermectin and doramectin following subcutaneous and oral administration in dogs. Veterinary Parasitology 135, 347–354.PubMedCrossRefGoogle Scholar
  23. Gottesman, M.M. and Pastan, I., 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Review of Biochemistry 62, 385–427.PubMedCrossRefGoogle Scholar
  24. Griffin, J., Fletcher, N. Clemence, R. Blanchflower, S. and Brayden, D.J., 2005. Selamectin is a potent substrate and inhibitor of human and canine P-glycoprotein. Journal of Veterinary Pharmacology and Therapeutics 28, 257–265.PubMedCrossRefGoogle Scholar
  25. Hopper, K., Aldrich, J. and Haskins, S.C., 2002. Ivermectin toxicity in 17 Collies. Journal of Veterinary Internal Medicine 16, 89–94.PubMedCrossRefGoogle Scholar
  26. Hugger, E.D., Novak, B.L., Burton, P., Audus, K.L. and Borchardt, R.T., 2002. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. Journal of Pharmaceutical Sciences 91, 1991–2002.PubMedCrossRefGoogle Scholar
  27. Jedlitschky, G., Hoffmann, U., and Kroemer, H.K., 2006. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opinion in Drug Metabolism and Toxicology 2, 351–366.CrossRefGoogle Scholar
  28. Jonker, J.W., Merino, G., Musters, S., van Herwaarden, A.E., Bolscher, E., Wagenaar, E., Mesman, E., Dale, T.C. and Schinkel, A.H., 2005. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nature Medicine 11, 127–129.PubMedCrossRefGoogle Scholar
  29. Karlsson, J., Kuo, S.M., Ziemniak, J. and Artursson, P., 1993. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. British Journal of Pharmacology 110, 1009–1016.PubMedGoogle Scholar
  30. Laffont, C.M., Alvinerie, M., Bousquet-Melou, A. and Toutain, P.L., 2001. Licking behaviour and environmental contamination arising from pour-on ivermectin for cattle. International Journal of Parasitology 31, 1687–1692.PubMedCrossRefGoogle Scholar
  31. Lespine, A., Dupuy, J., Orlowski, S., Nagy, T., Glavinas, H., Krajcsi, P. and Alvinerie, M., 2006. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chemico-Biological Interactions 159, 169–179.PubMedCrossRefGoogle Scholar
  32. Lespine, A., Martin, S., Dupuy, J., Roulet, A., Pineau, T., Orlowski, S. and Alvinerie, M., 2007. Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship. European Journal of Pharmaceutical Sciences 30, 84–94.PubMedCrossRefGoogle Scholar
  33. Lo, C.M., Keese, C.R. and Giaever, I., 1999. Cell-substrate contact: another factor may influence transepithelial electrical resistance of cell layers cultured on permeable filters. Experimental Cell Research 250, 576–580.PubMedCrossRefGoogle Scholar
  34. Martin, R.J., 1997. Modes of action of anthelmintic drugs. Veterinary Journal 154, 11–34.CrossRefGoogle Scholar
  35. Merino, G., Jonker, J.W., Wagenaar, E., Pulido, M.M., Molina, A.J., Alvarez, A.I. and Schinkel, A.H., 2005. Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metabolism and Disposition 33, 614–618.PubMedCrossRefGoogle Scholar
  36. Mealey, K.L., 2004. Therapeutic implications of the MDR1 gene. Journal of Veterinary Pharmacology and Therapeutics 27, 257–264.PubMedCrossRefGoogle Scholar
  37. Mealey, K.L., Bentjen, S.A., Gay, J.M. and Cantor, J.H., 2001. Ivermectin sensitivity in Collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11, 727–733.PubMedCrossRefGoogle Scholar
  38. Miller, D.S., Masereeuw, R. and Karnaky Jr., K.J., 2002. Regulation of MRP2-mediated transport in shark rectal salt gland tubules. American Journal of Physiology 282, R774–R781.PubMedGoogle Scholar
  39. Minderman, H., Vanhoefer, U., Toth, K., Minderman, M.D., Wrzosek, C., Slovak, M.L. and Rustum, Y.M., 1996. DiOC2(3) is not a substrate for multidrug resistance protein (MRP)-mediated drug efflux. Cytology 25, 14–20.Google Scholar
  40. Molento, M.B., Lifschitz, A., Sallovitz, J. and Lanusse, C., 2004. Influence of verapamil on the pharmacokinetics of the antiparasitic drugs ivermectin and moxidectin in sheep. Parasitology Research 92, 121–127.PubMedCrossRefGoogle Scholar
  41. Nies, A.T., Jedlitschky, G., Konig, J., Herold-Mende, C., Steiner, H.H., Schmitt, H.P. and Keppler, D., 2004. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129, 349–360.PubMedCrossRefGoogle Scholar
  42. Nies, A.T. and Keppler, D., 2006. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Archives doi:  10.1007/s00424-006-0109-y.
  43. Nobmann, S., Bauer, B. and Fricker, G., 2001. Ivermectin excretion by isolated functionally intact brain endothelial capillaries. British Journal of Pharmacology 132, 722–728.PubMedCrossRefGoogle Scholar
  44. Novotny, M.J., Krautmann, M.J., Ehrhart, J.C., Godin, C.S., Evans, E.I., McCall, J.W., Sun, F., Rowan, T.G. and Jernigan, A.D., 2000. Safety of selamectin in dogs. Veterinary Parasitology 91, 377–391.PubMedCrossRefGoogle Scholar
  45. Plumb, D.C., 2002. Veterinary Drug Handbook. 4th Edition. pp. 454–458; 734–735; 572–574. Ames Iowa State University Press, USA.Google Scholar
  46. Polli, J.W., Jarrett, J.L., Studenberg, S.D., Humphreys, J.E., Jordan, K.H., Mote, A.L., Salisbury, J.A., Tippin, T.K. and Serabjit-Singh, C.J., 2003. P-glycoprotein influences the brain concentrations of cetirizine (Zyrtec®), a second-generation non-sedating antihistamine. Journal of Pharmaceutical Sciences 92, 2082–2089.PubMedCrossRefGoogle Scholar
  47. Pouliot, J.F., L’Heureux, F., Liu, Z., Prichard, R.K. and Georges, E., 1997. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochemical Pharmacology 53, 17–25.PubMedCrossRefGoogle Scholar
  48. Prime-Chapman, H.M., Fearn, R.A, Cooper, A.E, Moore, V. and Hirst, B.H., 2004. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. Journal of Pharmacology and Experimental Therapeutics 311, 476–484.PubMedCrossRefGoogle Scholar
  49. Pulaski, L., Jedlitschky, G., Leier, I., Buchholz, U. and Keppler, D., 1996. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. European Journal of Biochemistry 241, 644–648.PubMedCrossRefGoogle Scholar
  50. Pulliam, J.D., Seward, R.L. and Henry, R.T., 1985. Investigating ivermectin toxicity in Collies. Veterinary Medicine 80, 33–40.Google Scholar
  51. Roulet, A., Puel, O., Gesta, S., Lepage, J., Drag, M., Soll, M., Alvinerie, M. and Pineau, T., 2003. MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. European Journal of Pharmacology 460, 85–91.PubMedCrossRefGoogle Scholar
  52. Saengkhae, C., Loetchutinat, C. and Garnier-Suillerot, A., 2003. Kinetic analysis of rhodamine efflux mediated by the multidrug resistance protein (MRP1). Biophysical Journal 85, 2006–2014.PubMedCrossRefGoogle Scholar
  53. Sarasola, P., Jernigan, A.D., Walker, D.K., Castledine, J., Smith, D.G. and Rowan, T.G., 2002. Pharmacokinetics of selamectin following intravenous, oral and topical administration in cats and dogs. Journal of Veterinary Pharmacology and Therapeutics 25, 265–272.PubMedCrossRefGoogle Scholar
  54. Schinkel, A.H., Smit, J.J., van Telligen, O., Beijnen, J.H., Wagenaar, E., van Deemter, L., van der Valk, M.A., Robanus-Maandag, E.C., te Riele, H.P., Berns, A.J.M. and Borst, P., 1994. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502.PubMedCrossRefGoogle Scholar
  55. Takeuchi, T., Yoshitomi, S., Higuchi, T., Ikemoto, K., Niwa, S., Ebihara, T., Katoh, M., Yokoi, T. and Asahi, S., 2006. Establishment and characterization of the transformants stably-expressing MDR1 derived from various animal species in LLC-PK1. Pharmaceutical Research 23, 1460–1472.PubMedCrossRefGoogle Scholar
  56. Thiebaut, F., Tsuruo, F., Hamada, H., Gottesman, M.M., Pastan, I. and Willingham, M.C., 1987. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proceeding of the National Academy of Sciences USA 84, 7735–7738.CrossRefGoogle Scholar
  57. Wang, Q., Rager, J.D., Weinstein, K., Kardos, P.S., Dobson, G.L., Li, J. and Hidalgo, I.J., 2005. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. International Journal of Pharmaceutics 288, 349–359.PubMedCrossRefGoogle Scholar
  58. Young, L.C., Campling, B.G., Voskoglou-Nomikos, T., Cole, S.P., Deeley, R.G. and Gerlach, J.H., 1999. Expression of multidrug resistance protein-related genes in lung cancer: correlation with drug response. Clinical Cancer Research 5, 673–680.PubMedGoogle Scholar
  59. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J.M. and Decleves, X., 2007. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Research 1134, 1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Agriculture, Food Science and Veterinary MedicineUniversity College DublinDublin 4Ireland

Personalised recommendations