Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanotechnologies Applied to the Analysis of the Animal Genome

  • 60 Accesses

Ajmone Marsan, P., Tramontana, S. and Mazza, R., 2007. Nanotechnologies applied to the analysis of the animal genome. Veterinary Research Communications, 31(Suppl. 1), 153–159

ABSTRACT

Whole genome sequence information and high throughput technologies are speeding up the investigation of cellular processes leading to the phenotypic expression of genetic information. Nanotechnologies provide innovative tools to accomplish this task, increasing throughput and sensitivity and decreasing cost and time of analyses. Goals as ambitious as the sequencing of a mammalian-sized genome in a matter of hours, and of detecting gene expression from a single cell, are just around the corner. Animal breeding will benefit from these advances in the understanding of the genetic basis of complex traits and in the application of molecular information for marker and gene assisted selection.

This is a preview of subscription content, log in to check access.

Abbreviations

AFM:

atomic force microscope

ECL:

electrochemiluminescence

HapMap:

haplotype mapping

GAS:

gene assisted selection

LD:

linkage disequilibrium

MAS:

marker assisted selection

QTG:

quantitative trait gene

QTL:

quantitative trait locus

QTN:

quantitative trait nucleotide

SAM:

self assembled monolayer

SNP:

single nucleotide polymorphism

REFERENCES

  1. Casalis L., Bano F., Bahar N., Castronovo M., Dell’Angela M., Hudej R., Scaini D. and Scoles G., 2004. Research Highlights, 51–54. Trieste http://www.elettra.trieste.it/science/highlights/2004-2005/elettra-hl0405-r11.pdf

  2. Collins F.S., Green E.D., Guttmacher A.E. and Guyer M.S., 2003. A vision for the future of genomics research. Nature, 422, 835–847

  3. Fologea D., Gershow M., Ledden B., McNabb D.S., Golovchenko J.A. and Li J., 2005. Detecting single stranded DNA with a solid state nanopore. Nano Letters, 5(10), 1905–1909

  4. Gunderson K.L., Huang X.C., Morris M.S., Lipshutz R.J., Lockhart D.J. and Chee M.S., 1998. Mutation detection by ligation to complete n-mer DNA arrays. Genome Research, 8, 1142–1153

  5. Hughes T.R., Mao M., Jones A.R., Burchard J., Marton M.J., Shannon K.W., Lefkowitz S.M., Ziman M., Schelter J.M., Meyer M.R., Kobayashi S., Davis C., Dai H., He Y.D., Stephaniants S.B., Cavet G., Walker W.L., West A., Coffey E., Shoemaker D.D., Stoughton R., Blanchard A.P., Friend S.H. and Linsley P.S., 2001. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19, 342–347

  6. Kennedy G.C., Matsuzaki H., Dong S., Liu W.M., Huang J., Liu G., Su X., Cao M., Chen W., Zhang J., Liu W., Yang G., Di X., Ryder T., He Z., Surti U., Phillips M.S., Boyce-Jacino M.T., Fodor S.P. and Jones K.W. 2003. Large-scale genotyping of complex DNA. Nature Biotechnology, 21(10), 1233–1237

  7. Lang H.P., Hegner M. and Gerber C., 2005. Cantilever array sensors. Materials Today, 8, 30–36

  8. Langerqvist J., Zwolak M. and Di Ventra M., 2006. Fast DNA sequencing via transverse electronic transport. Nano Letters, 6(4), 779–782

  9. Lipshutz R.J., Fodor S.P.A., Gingeras T.R. and Lockhart D.J., 1999. High density synthetic oligonucleotide arrays. Nature Genetics supplement, 21, 20–24

  10. Liu R.H., Nguyen T., Schwarzkopf K., Sho Fuji H., Petrova A., Siuda T., Peyvan K., Bizak M., Danley D. and McShea A., 2006. Fully integrated miniature device for automated gene expression DNA microarray processing. Analytical Chemistry, 78, 1980–1986

  11. McKendry R., Zhang J., Arntz Y., Strunz T., Hegner M., Lang H.P., Baller M.K., Certa U., Meyer E., Guntherodt H.J. and Gerber C., 2002. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Science USA, 99, 9783–9788

  12. Metzker M.L., 2005. Emerging technologies in DNA sequencing. Genome Research, 15, 1767–1776

  13. Oliphant A., Barker D.L., Stuelpnagel J.R. and Chee M.S., 2002. BeadArray™ technology: enabling an accurate, cost-effective approach to high-throughput genotyping. BioTechniques, 32, S56–S61

  14. Sanger F., Nicklen S. and Coulson A.R., 1992. DNA sequencing with chain-terminating inhibitors. Biotechnology, 24, 104–108

  15. Schena M., Shalon D., Davis R.W. and Brown P.Q., 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470

  16. Shumaker J.M., Metspalu A. and Caskey C.T., 1996. Mutation detection by solid phase primer extension. Human Mutation, 7, 346–354

  17. Umek R.M., Lin S.W., Vielmetter J., Terbrueggen R.H., Irvine B., Yu C.J., Faiz Kayyem J., Yowanto H1., Blackburn G.F., Farkas D.H. and Chen Y.P., 2001. Electronic detection of nucleic acids a versatile platform for molecular diagnostics. Journal of Molecular Diagnostics, 3(2), 74–84

  18. Xu S. and Liu G.Y., 1997. Nanometer-Scale Fabrication by Simultaneous Nanoshaving and Molecular Self-Assembly. Langmuir, 13(2), 127–129

Download references

Author information

Correspondence to P. Ajmone Marsan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ajmone Marsan, P., Tramontana, S. & Mazza, R. Nanotechnologies Applied to the Analysis of the Animal Genome. Vet Res Commun 31, 153–159 (2007). https://doi.org/10.1007/s11259-007-0079-3

Download citation

Keywords

  • animal breeding
  • DNA arrays
  • genomics
  • molecular markers
  • sequencing
  • trancriptomics