Veterinary Research Communications

, Volume 31, Issue 6, pp 703–717 | Cite as

Setting New Immunobiological Parameters in the Hamster Model of Visceral Leishmaniasis for In Vivo Testing of Antileishmanial Compounds

  • M. A. Dea-Ayuela
  • S. Rama-Íñiguez
  • J. M. Alunda
  • F. Bolás-Fernandez
Article

Abstract

To establish suitable immunobiological parameters for in vivo testing of new antileishmanial compounds in the golden hamster model of visceral leishmaniasis, two groups of 8 animals were infected each with 105 or 107 stationary promastigotes by the intracardiac route and the clinical and immunoparasitological features were monitored up to day 155 after infection. All animals became infected at both doses, although significant differences were observed between parasite burdens in liver and spleen. The mean number of parasites in animals infected with 107 promastigotes increased by 9.5 times in liver and by 43.1 times in spleen compared with those infected with 105 promastigotes. In animals given the higher dose, the outcome of the disease occurred between days 75 and 90 after infection, whereas no signs of disease were apparent in those given the lower infecting dose. Positive antibody (IgG) responses were detected earlier (week 5–7 after infection) in animals infected with the higher dose than in those infected with the lower dose (week 8–10 after infection), but these responses did not correlate with individual parasitological loads in liver and spleen. An inverse correlation was observed between infecting doses and in vitro spleen lymphocyte proliferation against mitogens (ConA). The proportion of CD4+ and CD19+ spleen cell increased in animals given the higher infection, whereas it decreased in those given the lower infection compared to naive controls.

Keywords

Leishmania infantum golden hamster visceral infection treatment immunobiology 

Abbreviations

BSA

bovine serum albumin

CSE

crude saline extract

Con A

concanavalin A

EDTA

ethylenediaminetetraacetic acid

ELISA

enzyme-linked immunosorbent assay

FACS

fluorescence-activated cell sorter

FCS

fetal calf serum

FELASA

Federation of European Laboratory Animal Associations

FITC

fluorescein isothiocyanate

IC

intracardiac

NNN

Novy, Nicolle and McNeal

OD

optical density

OPD

orthophenylenediamine

PBS

phosphate-buffered saline

Phyt

phytohaemagglutinin

R-PE

(R)-phycoerythrin

SI

stimulation index

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvar, J., Cañavate, C., Gutierrez-Solar, B, Jimenez, M., Laguna, F., Lopez-Velez, R., Molina, R. and Moreno, J., 1997. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clinical Microbiology Reviews, 10, 298–319PubMedGoogle Scholar
  2. Alvar, J., Cañavate, C., Molina, R., Moreno, J. and Nieto, J., 2004. Canine leishmaniasis. Advances in Parasitology, 57, 1–88PubMedCrossRefGoogle Scholar
  3. Belkaid,Y., Kamhawi. S., Modi, G., Valenzuela, J., Noben-Trauth, N., Rowto, E., Ribeiro, J. and Sacks, D.L., 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. Journal of Experimental Medicine, 188, 1941–1953PubMedCrossRefGoogle Scholar
  4. Binzahim, A.A., Chapman, W.L. Jr., Shin, S.S. and Hanson, W.L., 1993. Determination of virulence and pathogenesis of a canine strain of Leishmania infantum in hamsters and dogs. American Journal of Veterinary Research, 54, 113–121Google Scholar
  5. Bourdoiseau, G., Bonnefont, C., Hoareau, E., Boehringer, C., Stolle, T. and Chabanne, L., 1997. Specific IgG1 and IgG2 antibody and lymphocyte subsets levels in naturally Leishmania infantum-infected treated and untreated dogs. Veterinary Immunology. Immunopathology, 59, 21–30CrossRefGoogle Scholar
  6. Bradford, M., 1976. A rapid and sensitive method for quantification of microgramquantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–252PubMedCrossRefGoogle Scholar
  7. Bryceson, A., 2001. Current issues in the treatment of visceral leishmaniosis. Medical Microbiology Immunology, 190, 81–84Google Scholar
  8. Cabral, M., McNerney, R., Gomes, S., O'Grady, J., Frame, I., Sousa, J.C., Miles, M.A. and Alexander, J., 1993. Demonstration of natural Leishmania infection in asymptomatic dogs in the absence of specific humoral immunity. Archives del Institut Pasteur de Tunis, 70, 473–479Google Scholar
  9. Carrera, L., Balaña-Fouce, R. and Alunda, J.M., 1994. Polyamine content and drug sensitivities of different clonal lines of Leishmania infantum promastigotes. Parasitology Research, 80, 203–207PubMedCrossRefGoogle Scholar
  10. Carrio, J., de Colmenares, M., Riera, C., Gállego, M., Arboix, M. and Portús, M., 2000. Leishmania infantum: Stage-specific activity of pentavalent antimony related with the assay conditions. Experimental Parasitology, 95, 209–214PubMedCrossRefGoogle Scholar
  11. Croft, S., 2001. Monitoring drug resistance in leishmaniosis. Tropical Medicine and International Health, 6, 899–905PubMedCrossRefGoogle Scholar
  12. De Luna, R., Vuotto, M.L., Lelpo, M.T.L., Ambrosio, L., Piantedosi, D., Moscatiello, V., Ciaramella, P., Scalone, A., Gradoni, L. and Mancino, D., 1999. Early suppression of lymphoproliferative responses in dogs with natural infection by Leishmania infantum. Veterinary Immunology Immunopathology, 70, 95–1103CrossRefGoogle Scholar
  13. Dedet, J.P. and Pratlong, F., 2000. Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. Journal of Eukaryotic Microbiology, 47, 37–39PubMedCrossRefGoogle Scholar
  14. Desjeux, P. 1995. Leishmania/HIV co-infections. African Health, 18, 20–22Google Scholar
  15. Fernández-Pérez, F.J., Gomez-Muñoz, M.T., Méndez, S. and Alunda, J.M., 2003. Leishmania-specific lymphoproliferative responses and IgG1/IgG2 immunodetection patterns by Western blot in asymptomatic, symptomatic and treated dogs. Acta Tropica, 86, 83–91PubMedCrossRefGoogle Scholar
  16. Gifawesen, C. and Farrell, J.P., 1989. Comparison of T-cell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infection and Immunity, 57, 3091–3096PubMedGoogle Scholar
  17. Gonzalez, J.L., Rollan, E., Novoa, C. and Castaño, M., 1988. Structural and ultrastructural hepatic changes in experimental canine leishmaniasis. Histology and Histopathology, 3, 323–329PubMedGoogle Scholar
  18. Gradoni, L. 1999. Epizootiology of canine leishmaniasis in southern Europe. In: R. Killick-Kendrick (ed.), Canine Leishmaniasis: An update, (Hoechst Roussel Vet, Wiesbaden), 32–39Google Scholar
  19. Guarga, J.L., Moreno, J., Lucientes, J., Gracia, M.J., Peribañez, M.A., Alvar, J. and Castillo, J.A., 2000. Canine leishmaniasis transmission: higher infectivity amongst naturally infected dogs to sand flies is associated with lower proportions of T helper cells. Research in Veterinary Science, 69, 249–253PubMedCrossRefGoogle Scholar
  20. Hill, J.O., North, R.J. and Collins, F.M., 1983. Advantages of measuring changes in the number of viable parasites in murine models of experimental cutaneous leishmaniasis. Infection and Immunity, 39, 1087–1094PubMedGoogle Scholar
  21. Keithly, J.S., 1976. Infectivity of Leishmania donovani amastigotes and promastigotes for golden hamster. Journal of Protozoology, 23, 244–245PubMedGoogle Scholar
  22. Leclercq, V., Lebastard, M., Belkaid, Y., Lousi, J. and Milon, G.,1996. The outcome of the parasite process initiated by Leishmania infantum in laboratory mice. A tissue-dependent pattern controlled by the Lsh and MHC loci. Journal of Immunology, 157, 4537–4545Google Scholar
  23. Killick-Kendrick, R., Killick-Kendrick, M., Pinelli, E., Del Real, G., Molina, R., Vitutia, M., Cañavate, M.C. and Nieto. J., 1994. A laboratory model of canine leishmaniasis: the inoculation of dogs with Leishmania infantum promastigotes from midguts of experimentally infected phlebotomine sandflies. Parasite, 1, 311–318PubMedGoogle Scholar
  24. Martínez-Moreno, A., Moreno, T., Martínez-Moreno, F.J., Acosta, I. and Hernández, S., 1995. Humoral and cell-mediated immunity in natural and experimental leishmaniasis. Veterinary Immunology Immunopathology, 48, 209–220CrossRefGoogle Scholar
  25. Mauricio. I.L., Stothard, J.R. and Miles, M.A., 2000. The strange case of Leishmania chagasi. Parasitology Today, 16, 188–189PubMedCrossRefGoogle Scholar
  26. Melby, P.C., Tryon, V.V., Chandraseka, B. and Freeman, G.L., 1998. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infection and Immunity, 66, 2135–2142PubMedGoogle Scholar
  27. Melby, P.C., Chandrasekar, B., Zhao, W. and Coe, J.E., 2001. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. Journal of Immunology, 166, 1912–1920Google Scholar
  28. Mendez, S., Nell, M. and Alunda, J.M., 1996. Leishmania infantum: infection of macrophages in vitro with promastigotes. International Journal of Parasitology, 26, 619–622PubMedCrossRefGoogle Scholar
  29. Mendez, S., Gurunathan, S., Kamhawi, S., Belkaid, Y., Moga, M.A., Skeiky, Y.A., Campos-Neto. A., Reed, S., Seder, R.A. and Sacks, D., 2001. The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. Journal of Immunology, 166, 5122–5128Google Scholar
  30. Moreno, J., Nieto, J., Chamizo, C., Gonzalez, F., Blanco, F., Barrer, D.C. and Alvar, J., 1999. The immune response and PBMC subsets in canine visceral leishmaniasis before, and after chemotherapy. Veterinary Immunology Immunopathology, 71, 181–195CrossRefGoogle Scholar
  31. Mukherjee, P., Ghosh, A.K. and Ghose, A.C. 2003. Infection pattern and immune response in the spleen and liver of BALB/c mice intracardially infected with Leishmania donovani amastigotes. Immunological Letters, 86, 131–138CrossRefGoogle Scholar
  32. Pearson, R.D. and de Queiroz-Sousa, A., 1996. Clinical spectrum of leishmaniasis. Clinical Infection Diseases, 22, 1–13Google Scholar
  33. Nickol, A.D. and Bonventre, P.F., 1985. Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: immunosuppression by adherent spleen cells. Infection and Immunity, 50, 160–168PubMedGoogle Scholar
  34. Noli, C. and Auxilia, S.T., 2005. Treatment of canine Old World visceral leishmaniasis: a systematic review. Veterinary Dermatology, 16, 213–232PubMedCrossRefGoogle Scholar
  35. Requena, J.M., Soto, M., Doria, M.D. and Alonso, C., 2000. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Veterinary Immunology Immunopathology, 76, 269–281CrossRefGoogle Scholar
  36. Rica-Capela, M.J., Cortes, S., Leandro, C., Peleteiro, M.C., Santos-Gomes, G. and Campino, L., 2003. Immunological and histopathological studies in a rodent model infected with Leishmania infantum promastigotes or amastigotes. Parasitology Research, 89,163–169PubMedGoogle Scholar
  37. Rosypal, A.C., Zajac, A.M., Troy, G.C. and Lindsay, D.S., 2005. Infection in immunocompetent and immune-deficient mice with promastigotes of a North-American isolate of Leishmania infantum. Veterinary Paarsitology, 130, 19–27CrossRefGoogle Scholar
  38. Rousseau, D., Demartino, S., Anjuere, F., Ferrua, B., Fragak, K., Le Fichoux, Y. and Kubar, J., 2001. Sustained parasite burden in the spleen of Leishmania infantum-infected BALB/c mice is accompanied by expression of MCP-1 transcripts and lack of protection against challenge. European Cytokine Network, 12, 340–347PubMedGoogle Scholar
  39. Schnurr, L., Zuckerman, A. and Montilio, B., 1973. Dissemination of leishmanias to the organs of Syrian hamsters following intrasplenic inoculation of promastigotes. Experimental Parasitology, 34, 432–437CrossRefGoogle Scholar
  40. Stauber, L.A., 1966. The origin and significance of the distribution of parasites in visceral leishmaniasis. Transactions of the New York Academy of Sciences, 28, 635–643.PubMedGoogle Scholar
  41. Titus, R.G., Marchand, M., Boon, T. and Louis, J.A., 1985. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunology, 7, 545–555PubMedGoogle Scholar
  42. Vercammen, F., Fernandez-Perez, F.J., del Amo, C. and Alunda J.M., 2002. Follow-up of Leishmania infantum naturally infected dogs treated with allopurinol: immunofluorescence antibody test, ELISA and Western blot. Acta Tropica, 84, 175–181PubMedCrossRefGoogle Scholar
  43. Wyllie, S. and Fairlamb, A.H., 2006. Refinement of techniques for the propagation of Leishmania donovani in hamsters. Acta Tropica, 97, 364–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2007

Authors and Affiliations

  • M. A. Dea-Ayuela
    • 1
  • S. Rama-Íñiguez
    • 1
  • J. M. Alunda
    • 2
  • F. Bolás-Fernandez
    • 1
  1. 1.Departamento de Parasitología Facultad de FarmaciaUniversidad ComplutenseMadridSpain
  2. 2.Departamento de Sanidad Animal, Facultad de VeterinariaUniversidad ComplutenseMadridSpain

Personalised recommendations