Advertisement

Plant Ecology

, Volume 220, Issue 12, pp 1139–1151 | Cite as

Community assembly processes along a sub-Mediterranean elevation gradient: analyzing the interdependence of trait community weighted mean and functional diversity

  • Alessandro Bricca
  • Luisa Conti
  • Maria Federico Tardella
  • Andrea Catorci
  • Marco Iocchi
  • Jean-Paul Theurillat
  • Maurizio CutiniEmail author
Article

Abstract

Community-weighted mean (CWM) and functional diversity (FD) describe the two aspects of plant communities’ functional structure. While they have been often used separately to infer assembly processes, their covariation can actually provide useful insights into the prevalence of a particular assembly process over the other. We propose a framework where positive or negative covariation of these indices can be related to different assembly processes along an environmental gradient. We tested this framework in grassland communities along elevation gradient in Central Apennines by collecting species cover and traits of the most abundant species and calculating the effect size CWM and FD. We performed major axis regression for each effect size of CWM-FD relationship for different belts along the elevation gradient. The observation that Plant Height showed a positive CWM-FD relationship only under more stressful conditions indicates that there may be a tendency towards habitat filtering. Seed Mass showing positive covariation in each belt may indicate the presence of both habitat filtering and limiting similarity acting with different intensity depending on the environmental stress level. Negative covariation between CWM-Plant Height and Seed Mass-FD under less stress suggests biotic filter, while positive covariation between CWM-Plant Height and both Seed Mass and SLA FD under stressful conditions suggests the presence of habitat filtering. Ultimately, the relationship of CWM and FD may provide information on how different communities assemble along an environmental gradient. Moreover, combining the information of CWM with the FD and environmental stress level might help to identify the processes behind the same functional pattern.

Keywords

Assembly rules CWM FD Functional traits Habitat filtering Limiting similarity Weaker competitor exclusion 

Notes

Acknowledgements

The authors would like to thank Alicia Acosta for her valuable conceptual advices and Vittorio Piermarteri and Sheila Beatty for improving the English in the manuscript. Furthermore, our sincere thanks also go to the anonymous reviewers whose valuable comments provided important insights for improving our work. Finally, the Grant to the Department of Science, Roma Tre University (MIUR-Italy Dipartimenti di Eccellenza, Articolo 1, Commi 314-337 Legge 232/2016) is gratefully acknowledged.

Supplementary material

11258_2019_985_MOESM1_ESM.docx (820 kb)
Supplementary material 1 (DOCX 819 kb)
11258_2019_985_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb)
11258_2019_985_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 19 kb)
11258_2019_985_MOESM4_ESM.docx (220 kb)
Supplementary material 4 (DOCX 220 kb)

References

  1. Baker HG (1972) Seed weight in relation to environmental conditions in California. Ecology 53(6):997–1010.  https://doi.org/10.2307/1935413 CrossRefGoogle Scholar
  2. Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100(6):1422–1433.  https://doi.org/10.1111/1365-2745.12003 CrossRefGoogle Scholar
  3. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193CrossRefGoogle Scholar
  4. Borgy B, Violle C, Choler P, Denelle P, Munoz F, Kattge J et al (2017) Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Glob Ecol Biogeogr 26(10):1138–1152CrossRefGoogle Scholar
  5. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16(5):533–540.  https://doi.org/10.1111/j.1654-1103.2005.tb02393.x CrossRefGoogle Scholar
  6. Botta-Dukát Z (2018) Cautionary note on calculating standardized effect size (SES) in randomization test. Community Ecol 19:77–83CrossRefGoogle Scholar
  7. Botta-Dukát Z, Czúcz B (2016) Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol Evol 7:114–126.  https://doi.org/10.1111/2041-210X.12450 CrossRefGoogle Scholar
  8. Chelli S, Marignani M, Barni E, Petraglia A, Puglielli G, Wellstein C et al (2019) Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosyst.  https://doi.org/10.1080/11263504.2018.1559250 CrossRefGoogle Scholar
  9. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of Italian Flora. Ministero dell’Ambiente e della Tutela del Territorio-Dip. di Biologia Vegetale Università di Roma “La Sapienza”. Roma, Palombi EdGoogle Scholar
  10. Conti L, de Bello F, Lepš J, Acosta ATR, Carboni M (2017) Environmental gradients and micro-heterogeneity shape fine scale plant community assembly on coastal dunes. J Veg Sci 28:762–773.  https://doi.org/10.1111/jvs.12533 CrossRefGoogle Scholar
  11. Conti L, Block S, Parepa M, Münkemüller T, Thuiller W, Acosta ATR et al (2018) Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. J Ecol 106:1607–1620.  https://doi.org/10.1111/1365-2745.12928 CrossRefGoogle Scholar
  12. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126.  https://doi.org/10.1890/07-1134.1 CrossRefGoogle Scholar
  13. Cosentino D, Cipollari P, Marsili P, Scrocco D (2010) Geology of the central Apennine: a regional review. In: Beltrando M. et al. (Eds.), Journal of Virtual Explorer vol. 36, paper 11.  https://doi.org/10.3809/jvirtex.2009.00223
  14. Dainese M, Scotton M, Clementel F, Pecile A, Lepš J (2012) Do climate, resource availability, and grazing pressure filter floristic composition and functioning in Alpine pastures? Community Ecol 13(1):45–54.  https://doi.org/10.1556/ComEc.13.2012.1.6 CrossRefGoogle Scholar
  15. de Bello F (2012) The quest for trait convergence and divergence in community assembly: are null-models the magic wand ? Glob Ecol Biogeogr 21(3):312–317.  https://doi.org/10.1111/j.1466-8238.2011.00682.x CrossRefGoogle Scholar
  16. de Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W (2010) The partitioning of diversity: showing Theseus a way out of the labyrinth. J Veg Sci 21(5):992–1000.  https://doi.org/10.1111/j.1654-1103.2010.01195.x CrossRefGoogle Scholar
  17. de Bello F, Janeček Š, Lepš J, Doležal J, Macková J, Lanta V, Klimešová J (2012) Different plant trait scaling in dry versus wet Central European meadows. J Veg Sci 23(4):709–720.  https://doi.org/10.1111/j.1654-1103.2012.01389.x CrossRefGoogle Scholar
  18. de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36(3):393–402.  https://doi.org/10.1111/j.1600-0587.2012.07438.x CrossRefGoogle Scholar
  19. di Musciano M, Carranza M, Frate L, Di Cecco V, Di Martino L, Frattaroli A, Stanisci A (2018) Distribution of plant species and dispersal traits along environmental gradients in central Mediterranean Summits. Diversity 10(3):58.  https://doi.org/10.3390/d10030058 CrossRefGoogle Scholar
  20. Dias AT, Berg MP, de Bello F, Oosten AR, Bila K, Moretti M (2013) An experimental framework to identify community functional components driving ecosystem processes and services delivery. J Ecol 101(1):29–37.  https://doi.org/10.1111/1365-2745.12024 CrossRefGoogle Scholar
  21. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M et al (2004) Plant functional ecology markers capture ecosystems properties during secondary succession. Ecology 85:2630–2637.  https://doi.org/10.1890/03-0799 CrossRefGoogle Scholar
  22. Garnier E, Vile D, Roumet C, Lavorel S, Grigulis K, Navas ML, Lloret F (2019) Inter-and intra-specific trait shifts among sites differing in drought conditions at the north western edge of the Mediterranean Region. Flora 254:147–160CrossRefGoogle Scholar
  23. Goldberg DE, Landa K (1991) Competitive effect and response: hierarchies and correlated traits in the early stages of competition. J Ecol 79(4):1013–1030CrossRefGoogle Scholar
  24. Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096.  https://doi.org/10.1890/0012-9658(2002)083%5b2091:SCOAMA%5d2.0.CO;2 CrossRefGoogle Scholar
  25. Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A et al (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev 87(1):111–127.  https://doi.org/10.1111/j.1469-185X.2011.00187.x CrossRefPubMedGoogle Scholar
  26. Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. Wiley, TorontoGoogle Scholar
  27. Gross N, Börger L, Soriano-Morales SI, Le Bagousse-Pinguet Y, Quero JL, García-Gómez M, Valencia-Gómez E, Maestre FT (2013) Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. J Ecol 101(3):637–649.  https://doi.org/10.1111/1365-2745.12063 CrossRefGoogle Scholar
  28. Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B et al (2011) Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Ann Bot 108(7):1337–1345.  https://doi.org/10.1093/aob/mcr225 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Janeček Š, Lepš J (2005) Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation. Acta Oecol 28(2):141–147.  https://doi.org/10.1016/j.actao.2005.03.006 CrossRefGoogle Scholar
  30. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3(2):157–164.  https://doi.org/10.2307/3235676 CrossRefGoogle Scholar
  31. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. 2nd edn. Springer, Berlin.Google Scholar
  32. Körner C (2016) Plant adaptation to cold climates. F1000Research.  https://doi.org/10.12688/f1000research.9107.1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kraft NJ, Crutsinger GM, Forrestel EJ, Emery NC (2014) Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos 123(11):1391–1399.  https://doi.org/10.1111/oik.01311 CrossRefGoogle Scholar
  34. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.  https://doi.org/10.1890/08-2244.1 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laliberté E, Norton DA, Scott D (2013) Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci 24(5):834–842.  https://doi.org/10.1111/jvs.12044 CrossRefGoogle Scholar
  36. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12. https://cran.rproject.org/web/packages/FD
  37. Lavorel S, Garnier É (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16(5):545–556.  https://doi.org/10.1046/j.1365-2435.2002.00664.x CrossRefGoogle Scholar
  38. Legendre P, Legendre LF (2012) Numerical ecology, vol 24. Elsevier, AmsterdamGoogle Scholar
  39. Lepš J (2014) Scale-and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. J Appl Ecol 51(4):978–987.  https://doi.org/10.1111/1365-2664.12255 CrossRefGoogle Scholar
  40. Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30(7):795–806.  https://doi.org/10.1093/treephys/tpq052 CrossRefPubMedGoogle Scholar
  41. Lhotsky B, Kovács B, Ónodi G, Csecserits A, Rédei T, Lengyel A, Kertész M, Botta-Dukát Z (2016) Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J Ecol 104(2):507–517.  https://doi.org/10.1111/1365-2745.12532 CrossRefGoogle Scholar
  42. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101(921):377–385.  https://doi.org/10.1086/282505 CrossRefGoogle Scholar
  43. Májeková M, Paal T, Plowman NS, Bryndová M, Kasari L, Norberg A et al (2016) Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 11(2):e0149270CrossRefGoogle Scholar
  44. Malavasi M, Carranza ML, Moravec D, Cutini M (2018) Reforestation dynamics after land abandonment: a trajectory analysis in Mediterranean mountain landscapes. Reg Environ Chang 18:2459–2469.  https://doi.org/10.1007/s10113-018-1368-9 CrossRefGoogle Scholar
  45. Mason NW, de Bello F, Doležal J, Lepš J (2011) Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J Ecol 99(3):788–796.  https://doi.org/10.1111/j.1365-2745.2011.01801.x CrossRefGoogle Scholar
  46. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13(9):1085–1093.  https://doi.org/10.1111/j.1461-0248.2010.01509.x CrossRefPubMedGoogle Scholar
  47. McIntire EJ, Fajardo A (2014) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201(2):403–416CrossRefGoogle Scholar
  48. Michalet R, Schöb C, Lortie CJ, Brooker RW, Callaway RM (2014) Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Funct Ecol 28(1):75–86.  https://doi.org/10.1111/1365-2435.12136 CrossRefGoogle Scholar
  49. Mitrakos KA (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252Google Scholar
  50. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113(1):91–105.  https://doi.org/10.1111/j.0030-1299.2006.14194.x CrossRefGoogle Scholar
  51. Navarro-Cano JA, Goberna M, Valiente-Banuet A, Verdú M (2016) Same nurse but different time: temporal divergence in the facilitation of plant lineages with contrasted functional syndromes. Funct Ecol 30(11):1854–1861.  https://doi.org/10.1111/1365-2435.12660 CrossRefGoogle Scholar
  52. Nunes A, Köbel M, Pinho P, Matos P, de Bello F, Correia O, Branquinho C (2017) Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands. Agric For Meteorol 239:176–184.  https://doi.org/10.1016/j.agrformet.2017.03.007 CrossRefGoogle Scholar
  53. Oliver JE (2008) Encyclopedia of world climatology. Springer, New YorkGoogle Scholar
  54. Pakeman RJ, Quested HM (2007) Sampling plant functional traits: what proportion of the species need to be measured? Appl Veg Sci 10(1):91–96.  https://doi.org/10.1111/j.1654-109X.2007.tb00507.x CrossRefGoogle Scholar
  55. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234CrossRefGoogle Scholar
  56. Pescador DS, de Bello F, Valladares F, Escudero A (2015) Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect. PLoS ONE 10(3):e0118876CrossRefGoogle Scholar
  57. Petriccione B (1993) Flora e vegetazione del massiccio del Monte Velino (Appennino Centrale): comprendente il territorio della riserva naturale orientata” Monte Velino” e della foresta demaniale” Montagna della Duchessa” (con carta della vegetazione in scala 1: 10.000). Ministero Risorse Agricole, Alimentari e ForestaliGoogle Scholar
  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  59. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167(1):181–188.  https://doi.org/10.1007/s00442-011-1965-5 CrossRefPubMedGoogle Scholar
  60. Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I et al (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Total Environ 624:1429–1442.  https://doi.org/10.1016/j.scitotenv.2017.12.155 CrossRefPubMedGoogle Scholar
  61. Rosbakh S, Römermann C, Poschlod P (2015) Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Bot 125(2):79–86CrossRefGoogle Scholar
  62. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  63. Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. J Ecol 101(3):753–762.  https://doi.org/10.1111/1365-2745.12062 CrossRefGoogle Scholar
  64. Scolastri A, Bricca A, Cancellieri L, Cutini M (2017) Understory functional response to different management strategies in Mediterranean beech forests (central Apennines, Italy). For Ecol Manag 400:665–676.  https://doi.org/10.1016/j.foreco.2017.06.049 CrossRefGoogle Scholar
  65. Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc R Soc B 278:877–884.  https://doi.org/10.1098/rspb.2010.1369 CrossRefPubMedGoogle Scholar
  66. Tardella FM, Bricca A, Piermarteri K, Postiglione N, Catorci A (2017) Context-dependent variation of SLA and plant height of a dominant, invasive tall grass (Brachypodium genuense) in sub-Mediterranean grasslands. Flora 229:116–123.  https://doi.org/10.1016/j.flora.2017.02.022 CrossRefGoogle Scholar
  67. Theurillat J-P, Iocchi M, Cutini M, De Marco G (2011) Vascular plant richness along an elevation gradient at Monte Velino (Central Apennines, Italy). Biogeographia 28:149–166.  https://doi.org/10.21426/b628110003 CrossRefGoogle Scholar
  68. Valiente-Banuet A, Verdú M (2013) Plant facilitation and phylogenetics. Annu Rev Ecol Evol Syst 44:347–366.  https://doi.org/10.1111/1365-2745.12062 CrossRefGoogle Scholar
  69. Vojtkó A, Freitag M, Bricca A, Martello F, Compañ JM, Küttim M et al (2017) Clonal vs leaf-height-seed (LHS) traits: which are filtered more strongly across habitats? Folia Geobot 52(3–4):1–13.  https://doi.org/10.1007/s12224-017-9292-1 CrossRefGoogle Scholar
  70. Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74(1):159–164CrossRefGoogle Scholar
  71. Wellstein C, Campetella G, Spada F, Chelli S, Mucina L, Canullo R, Bartha S (2014) Context-dependent assembly rules and the role of dominating grasses in semi-natural abandoned sub-Mediterranean grasslands. Agric Ecosyst Environ 182:113–122.  https://doi.org/10.1016/j.agee.2013.12.016 CrossRefGoogle Scholar
  72. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2):213–227CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ScienceUniversity of Roma TreRomeItaly
  2. 2.Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic
  3. 3.Department of Functional Ecology, Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  4. 4.School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
  5. 5.Centre Alpien de Phytogéographie, Fondation J.-M. AubertChampex-LacSwitzerland
  6. 6.Section of BiologyUniversity of GenevaChambésySwitzerland

Personalised recommendations