Temperature shapes liana diversity pattern along a latitudinal gradient in southern temperate rainforest

  • Paulina Lobos-CatalánEmail author
  • Mylthon Jiménez-Castillo


The decrease in liana diversity with increasing latitude has been indicated as the major physiognomic difference between tropical and temperate forests’ ecosystem. Despite the robustness of this pattern, there is contrasting evidence about the environmental factors that model it. Here we evaluate the role of temperature, precipitation, soil fertility, and their interaction, over the richness and abundance pattern of liana species in a latitudinal gradient in the southern temperate rainforest. The study was carried out in the temperate rainforest of South America, in a latitudinal gradient from 37.4° S to 45.2° S encompassing 932 km. On this gradient, we select six study sites, with a total of 48 plots of 225 m2 each. In each site, we recorded species richness and abundance of lianas, temperature, precipitation, and soil nutrition. We use lineal models and AIC models to evaluate the relation between diversity and environmental factors. Liana diversity strongly declines with increasing latitude on the southern temperate rainforest. This result is consequence of the latitudinal decrease in liana species richness, but not a decrease in their abundance over latitude. The decrease in species richness was correlated with the reduction in temperature (mean minimum temperature, absolute minimum temperature, and number of frost events), and with no other environmental factors (precipitation, seasonality, or soil fertility) or their interaction. Our results support the hypothesis that cold intolerance is the key factor shaping the global pattern of liana diversity.


Diversity pattern Latitudinal gradient Lianas Temperate rainforest 



Thanks to Consuelo Ruiz, Isabella Aguilera, Daniela Cosimo, Pedro Jara, Jessica Winkler, Carolina Poveda, Marina Jiménez, and Camila Tejo for the valuable help with fieldwork. We are thankful to the reviewers for their helpful suggestions, and also to Corporación Nacional Forestal (CONAF) and Bosques Arauco for authorizing access to the study sites.


This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica (Doctoral Research Grant Number 21110389 for PLC) and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1130898 to MJC).

Supplementary material

11258_2019_980_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 46 kb)


  1. Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern African forest. J Ecol 93–100CrossRefGoogle Scholar
  2. Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob Ecol Biogeogr 12(4):327–340CrossRefGoogle Scholar
  3. Brown JH, Lomolino MV (1998) Biogeography. Sinauer, Sunderland, pp 1–624Google Scholar
  4. Chave J, Riéra B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17(01):79–96CrossRefGoogle Scholar
  5. Davis S, Sperry J, Hacke U (1999) The relationship between xylem and cavitation caused by freezing. Am J Bot 86:1367–1372PubMedCrossRefGoogle Scholar
  6. DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7–19Google Scholar
  7. Dewalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16(1):1–19CrossRefGoogle Scholar
  8. DeWalt SJ, Ickes K, Nilus R et al (2006) Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecol 186:203–216CrossRefGoogle Scholar
  9. DeWalt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai Z et al (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42(3):309–317CrossRefGoogle Scholar
  10. DeWalt SJ, Schnitzer SA, Alves LF, Bongers F, Burnham RJ, Cai Z, et al (2015) Biogeographical patterns of liana abundance and diversity. Ecol Lianas 131–146Google Scholar
  11. di Castri F, Hajek ER (1976) Bioclimatología de Chile. Vicerrectoría Académica de la Universidad Católica de Chile, Santiago, p 128Google Scholar
  12. Donoso C (1997) Ecología Forestal. El Bosque y su Medio Ambiente. 5ta.Universitaria. Santiago de ChileGoogle Scholar
  13. Durigon J, Durán SM, Gianoli E (2013) Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. J Trop Ecol 29(04):357–360CrossRefGoogle Scholar
  14. Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bahuinia (Fabaceae). Oecologia 8:233–237CrossRefGoogle Scholar
  15. Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110(2):191–196PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gartner B, Bullock S, Mooney H, Brown B, Whitbeck J (1990) Water transport of vine and tree stems in tropical deciduous forest. Am J Bot 77:742–749CrossRefGoogle Scholar
  17. Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 1–34CrossRefGoogle Scholar
  18. Gentry AH (1991) The distribution and evolution of climbing plants. In Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3, 49Google Scholar
  19. Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ et al (2006) A standard protocol for Liana Censuses1. Biotropica 38(2):256–261CrossRefGoogle Scholar
  20. Godoy R, Valenzuela E, Guevara G, Boy J, Barrientos M, Matus F (2014) Biogeoquimica en los Bosques Templados del Sur de Chile. In: Donoso C, Gonzalez M, Lara A (eds) Ecología Forestal: Bases para el manejo sustentable y conservacion de los bosques nativos de Chile. Universidad Austral de ChileGoogle Scholar
  21. Hegarty EE, Caballe G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 313–335Google Scholar
  22. Hu L, Li M, Li Z (2010) Geographical and environmental gradients of lianas and vines in China. Glob Ecol Biogeogr 19(4):554–561Google Scholar
  23. Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin ‘s time into the 21st century. Am J Bot 96:1205–1221PubMedCrossRefGoogle Scholar
  24. Jiménez-Castillo M, Lusk CH (2013) Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees. Funct Ecol 27(2):403–412CrossRefGoogle Scholar
  25. Jiménez-Castillo M, Wiser SK, Lusk CH (2007) Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. J Biogeogr 34:163–168CrossRefGoogle Scholar
  26. Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? American Naturalist 167–180CrossRefGoogle Scholar
  27. Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside PM, D’Angelo S, Jerozolinski A et al (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82(1):105–116CrossRefGoogle Scholar
  28. Lehmann J, Schroth G (2003) Nutrient leaching. trees, crops and soil fertility. CABI Publishing, Wallingford 151–166Google Scholar
  29. Luzio W, Alcayaga S (1992) Mapa de asociaciones de grandes grupos de suelos de Chile. Agric Técnica 52(4):347–353Google Scholar
  30. Macía MJ, Ruokolainen K, Tuomisto H et al (2007) Congruence between floristic patterns of trees and lianas in a southwest Amazonian rain forest. Ecography 30:561–577CrossRefGoogle Scholar
  31. Magurran AE (2004) Measuring biological diversity. African Journal of Aquatic Science 29(2):285–286CrossRefGoogle Scholar
  32. Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. J Veg Sci 21(3):551–560CrossRefGoogle Scholar
  33. Molina-Freaner F, Gámez RC, Tinoco-Ojanguren C, Castellanos AE (2004) Vine species diversity across environmental gradients in northwestern Mexico. Biodivers Conserv 13(10):1853–1874CrossRefGoogle Scholar
  34. Muñoz AA, Chacón P, Pérez F, Barnert ES, Armesto JJ (2003) Diversity and host tree preferences of vascular epiphytes and vines in a temperate rainforest in southern Chile. Aust J Bot 51(4):381–391CrossRefGoogle Scholar
  35. Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manag 190(1):15–31CrossRefGoogle Scholar
  36. Phillips OL, Miller JS (2002) Global patterns of plant diversity: Alwyn H. Gentry’s Forest Transect Data Set. Missouri Botanical Garden, St. Louis, MOGoogle Scholar
  37. Putz FE, Chai P (1987) Ecological studies of lianas in Lambir national park, Sarawak, Malaysia. J Ecol 523–531CrossRefGoogle Scholar
  38. Putz FE, Mooney HA (1991) The biology of vines. Cambridge University Press, CambridgeGoogle Scholar
  39. Richards PW (1996) The tropical rain forest (2nd edn). Cambridge University Press, CambridgeGoogle Scholar
  40. Sadzawka A, Carrasco MA, Grez R, Mora ML, Flores H, Neaman A (2004) Métodos de análisis recomendados para los suelos chilenos.Comisión de Normalización y Acreditación. Sociedad Chilena de la Ciencia del Suelo, Santiago, ChileGoogle Scholar
  41. Schlatter J, Grez R, Gerding V (2003) Manual para el reconocimiento de suelos. Universidad Austral de Chile, ValdiviaGoogle Scholar
  42. Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166(2):262–276PubMedCrossRefGoogle Scholar
  43. Schnitzer SA (2018) Testing ecological theory with lianas. New Phytol 220(2):366–380. CrossRefPubMedGoogle Scholar
  44. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230CrossRefGoogle Scholar
  45. Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14(4):397–406PubMedCrossRefGoogle Scholar
  46. Schnitzler SA, Amigo J, Hale B, Schnitzler C (2016) Patterns of climber distribution in temperate forests of the Americas. J Plant Ecol rtw012Google Scholar
  47. Sperry JS, Holbrook NM, Zimmerman MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417PubMedPubMedCentralCrossRefGoogle Scholar
  48. van der Heijden GM, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17(3):372–383CrossRefGoogle Scholar
  49. Vázquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 96:999–1020Google Scholar
  50. Whittaker RH, Levin SA (eds) (1975) Niche: theory and application. Stroudsburg: Dowden, Hutchinson & RossGoogle Scholar
  51. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evolut Syst 273–309CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile

Personalised recommendations