Advertisement

Plant Ecology

, Volume 220, Issue 10, pp 995–1008 | Cite as

Divergence of functional traits at early stages of development in Stipa tenacissima populations distributed along an environmental gradient of the Mediterranean

  • Khouloud KrichenEmail author
  • Alberto Vilagrosa
  • Mohamed Chaieb
Article

Abstract

Assessing differences in plant functional traits (PFTs) along climatic gradients is potentially useful for understanding variation within and across populations, and for predicting their responses to climate change. This study investigates the intraspecific variability of several PFTs in Stipa tenacissima (Alpha grass) seedlings from different populations distributed across a climatic gradient. Seven populations from Tunisia to Spain within a 100–600 mm/year rainfall range were selected. Seedlings from each population were grown in a common garden. We expected the functional characteristics to differ among seedling populations according to their climatic gradient. The response patterns were helpful to predict acclimation and fitness under future climatic conditions in these populations. The seedling development analysis showed differences in PFTs among S. tenacissima populations. The biomass traits analysis revealed that higher above-ground biomass was related to higher below-ground development. The leaf traits proved that seedlings with longer leaf length would have less sclerophyllous leaves, a trade-off between productivity and drought resistance. The root traits analysis reflects seedling strategies to maximize resource uptake efficiency. PFTs showed several significant relationships with climatic conditions. The less rainfall, the higher plant allocation to root systems exploring soil. Higher mean temperatures were related to reduced root/plant development. The PFT analysis proves that species followed the ‘optimal partitioning theory’, in that plants preferentially allocate biomass to acquire the resource that most limits their development. However, both the environmental conditions and genetic diversity in S. tenacissima populations influenced seedling growth and behaviour to face ongoing climate change.

Keywords

Stipa tenacissima Population Allocation Functional variability Leaf trait Root trait 

Notes

Acknowledgements

We thank the ANSE (Asociación Naturalistas del Sureste) and CIEF-Banc de Llavors (Generalitat Valenciana) for facilitating seed sources from the Murcia and Valencia populations, respectively. Felipe Gil (SSTT, Generalitat Valenciana) is thanked for the nursery facilities (Guardamar forest nursery) during the cultivation period and experiment development. AV’s work was partially funded by Projects CGL-2011-30531-CO2-02 and CGL2015-69773-C2-2-P MINECO/FEDER by the Spanish Government, and by the Prometeo Program (FEEDBACK project, 2009/006) by the Generalitat Valenciana. CEAM is supported by the Generalitat Valenciana.

Supplementary material

11258_2019_969_MOESM1_ESM.docx (25 kb)
Supplementary file1 (DOCX 25 kb)

References

  1. Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145.  https://doi.org/10.1111/j.1461-0248.2006.01006.x CrossRefGoogle Scholar
  2. Barber A, Cabrera MR, Guardiola I (1997) Sobre la cultura de l’espart al territori valencià. Fundació Bancaixa, 252 ppGoogle Scholar
  3. Ben Mariem H, Chaieb M (2017) Climate change impacts on the distribution of stipa tenacissima l. Ecosystems in north african arid zone—a case study in tunisia. Appl Ecol Environ Res 15:67–82.  https://doi.org/10.15666/aeer/1503_067082 CrossRefGoogle Scholar
  4. Boussaid M, Benito C, Harche MK, Naranjo T, Zedek M (2010) Genetic variation in natural populations of Stipa tenacissima from Algeria. Biochem Genet 48:857–872.  https://doi.org/10.1007/s10528-010-9367-7 CrossRefGoogle Scholar
  5. Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941.  https://doi.org/10.1111/j.1558-5646.2007.00248.x CrossRefGoogle Scholar
  6. Chambel MR, Climent J, Alía R, Valladares F (2005) Phenotypic plasticity: a useful framework for understanding adaptation in forest species. Investig Agrar Sist Recur 3:334–344CrossRefGoogle Scholar
  7. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916CrossRefGoogle Scholar
  8. Chirino E, Ruiz-Yanetti S, Vilagrosa A, Mera X, Espinoza M, Lozano P (2017) Morpho-functional traits and plant response to drought conditions in seedlings of six native species of Ecuadorian ecosystems. Flora Morphol Distrib Funct Ecol Plants 233:58–67.  https://doi.org/10.1016/j.flora.2017.05.012 CrossRefGoogle Scholar
  9. De la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199.  https://doi.org/10.1111/jvs.12341 CrossRefGoogle Scholar
  10. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, De Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304.  https://doi.org/10.1111/j.1654-1103.2004.tb02266.x CrossRefGoogle Scholar
  11. Dong Y, Liu Y (2017) Response of Korean pine’s functional traits to geography and climate. PLoS ONE 12:e0184051.  https://doi.org/10.1371/journal.pone.0184051 CrossRefGoogle Scholar
  12. Emberger L (1955) Une classification Biogéographique des Climats. Recueil des Travaux des Laboratoires de Botanique, Géologie et Zoologie de la Faculté des Sciences de L’Université de Montpellier, Série Botanique, vol 7, pp 3–43Google Scholar
  13. Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J (2017) Drought effect on plant biomass allocation: a meta-analysis. Ecol Evol 7:11002–11010.  https://doi.org/10.1002/ece3.3630 CrossRefGoogle Scholar
  14. Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 10:44.  https://doi.org/10.2307/2390260 CrossRefGoogle Scholar
  15. Grossiord C, Sevanto S, Borrego I, Chan AM, Collins AD, Dickman LT, Hudson PJ, McBranch N, Michaletz ST, Pockman WT, Ryan M, Vilagrosa A, McDowell NG (2017) Tree water dynamics in a drying and warming world. Plant Cell Environ 40:1861–1873.  https://doi.org/10.1111/pce.12991 CrossRefGoogle Scholar
  16. Guswa AJ (2008) The influence of climate on root depth: a carbon cost-benefit analysis. Water Resour Res.  https://doi.org/10.1029/2007WR006384 Google Scholar
  17. Hajek P, Hertel D, Leuschner C (2013) Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Front Plant Sci 4:415.  https://doi.org/10.3389/fpls.2013.00415 CrossRefGoogle Scholar
  18. Hernández EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244.  https://doi.org/10.1007/s11258-009-9668-2 CrossRefGoogle Scholar
  19. Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963.  https://doi.org/10.1111/j.1365-2745.2011.01821.x CrossRefGoogle Scholar
  20. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274.  https://doi.org/10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  21. Kobe RK, Iyer M, Walters MB (2010) Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91:166–179.  https://doi.org/10.1890/09-0027.1 CrossRefGoogle Scholar
  22. Krichen K, Ben Mariem H, Chaieb M (2014) Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S Afr J Bot 94:210–217.  https://doi.org/10.1016/j.sajb.2014.07.008 CrossRefGoogle Scholar
  23. Krichen K, Vilagrosa A, Chaieb M (2017) Environmental factors that limit Stipa tenacissima L. germination and establishment in Mediterranean arid ecosystems in a climate variability context. Acta Physiol Plant.  https://doi.org/10.1007/s11738-017-2475-9 Google Scholar
  24. Le Houérou HN (1995) Bioclimatologie et biogéographie des steppes arides du Nord de l’Afrique. In: Diversité biologique, développement durable et désertification. Options Méditerranéennes: Série B. Etudes et Recherche; n. 10, CIHEM/ACCT Zaragosa, p 396Google Scholar
  25. Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605.  https://doi.org/10.1016/j.baae.2007.11.003 CrossRefGoogle Scholar
  26. Long W, Zang R, Schamp BS, Ding Y (2011) Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia 167:1103–1113.  https://doi.org/10.1007/s00442-011-2050-9 CrossRefGoogle Scholar
  27. Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97.  https://doi.org/10.1038/nature25783 CrossRefGoogle Scholar
  28. Mcgill BJ, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. TRENDS Ecol Evol.  https://doi.org/10.1016/j.tree.2006.02.002 Google Scholar
  29. Müller A, Horna V, Zhang C, Leuschner C (2012) Different growth strategies determine the carbon gain and productivity of aspen collectives to be used in short-rotation plantations. Biomass Bioenergy 46:242–250.  https://doi.org/10.1016/j.biombioe.2012.08.020 CrossRefGoogle Scholar
  30. Nishar A, Bader MK-F, O’Gorman EJ, Deng J, Breen B, Leuzinger S (2017) Temperature effects on biomass and regeneration of vegetation in a geothermal area. Front Plant Sci 8:249.  https://doi.org/10.3389/fpls.2017.00249 CrossRefGoogle Scholar
  31. Pastor E, Soliveres S, Vilagrosa A, Bonet A (2018) Intraspecific leaf shape at local scale determines offspring characteristics. J Arid Environ 153:18–23CrossRefGoogle Scholar
  32. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte A, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Ter Steege H, Van Der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot.  https://doi.org/10.1071/BT12225 Google Scholar
  33. Poorter L (2005) Resource capture and use by tropical forest tree seedlings and their consequences for competition. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics their role in the maintenance of species diversity. Cambridge University Press, Cambridge, pp 35–64CrossRefGoogle Scholar
  34. Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007) Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecol Monogr 77:239–252.  https://doi.org/10.1890/06-0780 CrossRefGoogle Scholar
  35. Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164.  https://doi.org/10.1086/374368 CrossRefGoogle Scholar
  36. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494.  https://doi.org/10.1046/j.1365-2745.2002.00682.x CrossRefGoogle Scholar
  37. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  38. Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331.  https://doi.org/10.1046/j.1365-2435.2002.00626.x CrossRefGoogle Scholar
  39. Soudzilovskaia NA, Elumeeva TG, Onipchenko VG, Shidakov II, Salpagarova FS, Khubiev AB, Tekeev DK, Cornelissen JHC (2013) Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc Natl Acad Sci 110:18180–18184.  https://doi.org/10.1073/pnas.1310700110 CrossRefGoogle Scholar
  40. Taïbi K, del Campo AD, Vilagrosa A, Bellés JM, López-Gresa MP, Pla D, Calvete JJ, López-Nicolás JM, Mulet JM (2017) Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci 8:1202.  https://doi.org/10.3389/fpls.2017.01202 CrossRefGoogle Scholar
  41. Trubat R, Cortina J, Vilagrosa A (2012) Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia 170:899–908.  https://doi.org/10.1007/s00442-012-2380-2 CrossRefGoogle Scholar
  42. Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116CrossRefGoogle Scholar
  43. Vallejo VR, Serrasolses I, Alloza JA, Baeza MJ, Blade C, Chirino E, Duguy B, Fuentes D, Pausas JG, Valdecantos A, Vilagrosa A (2009) Long-term restoration strategies and techniques. In: Cerda A, Robichaud P (eds) Fire effects on soil and restoration strategies. Science Publishers. Enfield, NH, USA, pp 373–400CrossRefGoogle Scholar
  44. Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010) Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environ Exp Bot 69:233–242.  https://doi.org/10.1016/j.envexpbot.2010.04.013 CrossRefGoogle Scholar
  45. Vilagrosa A, Hernández EI, Luis VC, Cochard H, Pausas JG (2014) Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol 201:1277–1288.  https://doi.org/10.1111/nph.12584 CrossRefGoogle Scholar
  46. Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97.  https://doi.org/10.1046/j.1365-2745.1999.00330.x CrossRefGoogle Scholar
  47. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellssen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada H, Poorter H, Pool P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827.  https://doi.org/10.1038/nature02403 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Unit of Plant Biodiversity and Ecosystems in Arid Environments, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Mediterranean Center for Environmental Studies (CEAM Foundation)Joint Research Unit University of Alicante-CEAMAlicanteSpain

Personalised recommendations