Advertisement

Plant Ecology

, Volume 220, Issue 4–5, pp 467–480 | Cite as

A height-wood-seed axis which is preserved across climatic regions explains tree dominance in European forest communities

  • José M. Costa-SauraEmail author
  • Antonio Trabucco
  • Donatella Spano
  • Simone Mereu
Article
  • 46 Downloads

Abstract

Environmental constraints on both functional traits and trait–trait correlation patterns are extremely relevant research questions to understand assembling mechanisms and scaling processes in ecology. In fact, community weighted mean (CWM) and functional diversity (FD) metrics assimilate meaningful complementary information from species to community level. Relating species abundance data from national forest inventories (France, Italy and Spain) with species trait values from published sources, we explored CWM and FD variations along climatic gradients for traits related to leaf, hydraulic and live history strategies, and how the CWM or the FD of single traits co-vary. Results show how the combined effects of water availability and temperature modulate CWM, and to a lower extent FD, of Western European forests. PCA on CWM traits data showed that main axis accounts for 46.6% of the variability and is represented by wood density, seed dry weight (SDW) and maximum height. This axis is similarly preserved in humid and dry areas and potentially related to competition ability, growth rates and successional status of tree species dominants. Furthermore, the second axis is associated with leaf wilting and cavitation resistance (P50), but not consistent in dry areas. Correlation patterns of FD data, which were partially preserved across climatic regions, showed one main axis involving the joint variability of all traits. However, between humid and dry areas determinants of SDW and P50 differ from all other traits. Results showed that at least a part of the co-variation patterns among traits change with climate conditions, suggesting scale-dependent effects which should be taken into account when scaling assembly mechanisms.

Keywords

Trait covariation Community weighted mean Functional diversity Forest inventory 

Notes

Acknowledgements

J.M. Costa-Saura was supported by a scholar grant under the project SIM4NEXUS (No. 689150) from the European Union’s Horizon 2020 research.

Supplementary material

11258_2019_928_MOESM1_ESM.docx (945 kb)
Supplementary material 1 (DOCX 945 kb)

References

  1. Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457CrossRefGoogle Scholar
  2. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740–745CrossRefGoogle Scholar
  3. Beck P, Caudullo G, De Rigo D, Tinner W (2016) Betula pendula, Betula pubescens and other birches in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publications Office of the European Union, Luxembourg, pp 70–73Google Scholar
  4. Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40CrossRefGoogle Scholar
  5. Borgy B, Violle C, Choler P, Denelle P, Munoz F, Kattge J, Lavorel S, Loranger J, Amiaud B, Bahn M, Van Bodegom PM, Brisse H, Debarros G, Diquelou S, Gachet S, Jolivet C, Lemauviel-Lavenant S, Mikolajczak A, Olivier J, Ordoñez JC, de Ruffray P, Viovy N, Garnier E (2018) Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Glob Ecol 26:1138–1152CrossRefGoogle Scholar
  6. Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173:673–694CrossRefGoogle Scholar
  7. Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (1998) Model selection and multimodel inference, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  9. Castro-Díez P (2012) Functional traits analyses: scaling-up from species to community level. Plant Soil 357:9–12CrossRefGoogle Scholar
  10. Caudullo G, Tinner W, de Rigo D (2016) Picea abies in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publications Office of the European Union, Luxembourg, pp 114–116Google Scholar
  11. Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463CrossRefGoogle Scholar
  12. Chave J, Coomes D, Jansen S (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366CrossRefGoogle Scholar
  13. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755CrossRefGoogle Scholar
  14. Cingolani AM, Gurvich DE, Diaz S (2007) Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? J Veg Sci 18:911–920CrossRefGoogle Scholar
  15. Costa-Saura JM, Martínez-Vilalta J, Trabucco A, Spano D, Mereu S (2016) Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspect Plant Ecol Evol Syst 21:23–30CrossRefGoogle Scholar
  16. Costa-Saura JM, Trabucco A, Spano D, Mereu S (2017) Environmental filtering drives community specific leaf area in Spanish forests and predicts relevant changes under future climatic conditions. For Ecol Manag 405:1–8CrossRefGoogle Scholar
  17. De la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016a) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE 11:1–18Google Scholar
  18. De la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R (2016b) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–363CrossRefGoogle Scholar
  19. De la Riva EG, Tosto A, Perez-Ramos I, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016c) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root trais? J Veg Sci 27:187–199CrossRefGoogle Scholar
  20. De Micco V, Aronne G (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 37–61CrossRefGoogle Scholar
  21. De Rigo D, Caudullo G (2016) Quercus ilex in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publications Office of the European Union, Luxembourg, pp 152–153Google Scholar
  22. de Rigo D, Enescu CM, Durrant TH, Caudullo G (2016) Populus nigra in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publications Office of the European Union, Luxembourg, pp 136–137Google Scholar
  23. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany A, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304CrossRefGoogle Scholar
  24. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rudger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529:167–171CrossRefGoogle Scholar
  25. Direccion General de Conservacion de la Naturaleza (2006) Tercer Inventario Forestal Nacional 1997–2006. Ministerio de Medio Ambiente, Madrid, SPGoogle Scholar
  26. Dubuis A, Rossier L, Pottier J, Pellissier L, Vittoz P, Guisan A (2013) Predicting current and future spatial community patterns of plant functional traits. Ecography 36:1–11CrossRefGoogle Scholar
  27. Dwyer JM, Laughlin DC (2017a) Selection on trait combinations along environmental gradients. J Veg Sci 28:672–673CrossRefGoogle Scholar
  28. Dwyer JM, Laughlin DC (2017b) Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecol Lett 20:872–882CrossRefGoogle Scholar
  29. Funk JL, Cornwell WK (2013) Leaf traits within communities: context may affect the mapping of traits to function leaf traits within communities. Ecology 94:1893–1897CrossRefGoogle Scholar
  30. Garnier E, Cortez J, Billès G, Navas M (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  31. Greenwood S, Ruiz-Benito P, Martinez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bonisch G, Kraft NJB, Jump SA (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539–553CrossRefGoogle Scholar
  32. Grime J (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  33. Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  34. Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186CrossRefGoogle Scholar
  35. Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963CrossRefGoogle Scholar
  36. Houston Durrant T, de Rigo D, Caudullo G (2016) Salix alba in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publications Office of the European Union, Luxembourg, p 168Google Scholar
  37. Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71CrossRefGoogle Scholar
  38. Kunstler G, Falster D, Coomes DA, Hui F, Robert M, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson SJ, Ruiz-Benito P, Sun I, Stahl U, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmermann K, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207CrossRefGoogle Scholar
  39. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefGoogle Scholar
  40. Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, Mcintyre S, Pausas JG, Catherine NP, Carlos R, Roumet C, Pérez-harguindeguy Natalia, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 149–160CrossRefGoogle Scholar
  41. Le Bagousse-Pinguet Y, Luca B, Quero JL, García-Gómez M, Soriano S, Maestre FT, Gross N (2015) Traits of neighbouring plants and space limitation determine intraspeci fi c trait variability in semi-arid shrublands. J Ecol 103:1647–1657CrossRefGoogle Scholar
  42. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  43. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808CrossRefGoogle Scholar
  44. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  45. Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 98:1462–1475CrossRefGoogle Scholar
  46. Ministero delle Politiche Agrarie e Forestali (2006) Inventario nazionale delle foreste e dei serbatoi forestali di carbonio. Procedure di posizionamento e di rilievo degli attributi di terza faseGoogle Scholar
  47. Moles AT, Leishman MR (2008) The seedling as part of a plant’ s life history strategy. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 215–235Google Scholar
  48. Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, Sack L, Pitman A, Kattge J, Aarssen LW, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen JHC, Cornwell WK, Díaz S, Dickie JB, Freschet GT, Griffiths JG, Gutierrez AG, Hemmings FA, Hickler T, Hitchcock TD, Keighery M, Kleyer M, Kurokawa H, Leishman MR, Liu K, Niinemets Ü, Onipchenko V, Onoda Y, Penuelas J, Pillar VD, Reich PB, Shiodera S, Siefert A, Sosinski EE, Soudzilovskaia NA, Swaine EK, Swenson NG, van Bodegom PM, Warman L, Weiher E, Wright IJ, Zhang H, Zobel M, Bonser SP (2014) Which is a better predictor of plant traits: temperature or precipitation? J Veg Sci 25:1167–1180CrossRefGoogle Scholar
  49. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177CrossRefGoogle Scholar
  50. Münkemüller T, de Bello F, Meynard CN, Gravel D, Lavergne S, Mouillot D, Mouquet N, Thuiller W (2012) From diversity indices to community assembly processes: a test with simulated data. Ecography (Cop) 35:468–480CrossRefGoogle Scholar
  51. Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients in seed mass in relation to climate. J Biogeogr 31:379–388CrossRefGoogle Scholar
  52. Muscarella R, Uriarte M (2016) Do community-weighted mean functional traits reflect optimal strategies? Proc R Soc B 283:20152434CrossRefGoogle Scholar
  53. Nardini A, Lo Gullo MA, Trifilò P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environ Exp Bot 103:68–79CrossRefGoogle Scholar
  54. Navas M, Roumet C, Bellmann A, Laurent G, Garnier E (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol 12:183–196CrossRefGoogle Scholar
  55. Nunes A, Köbel M, Pinho P, Matos P, De Bello F, Correia O, Branquinho C (2017) Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands. Agric For Meteorol 239:176–184CrossRefGoogle Scholar
  56. Paillet Y, Bergès L, Hjältén J, Ódor P, Avon C, Bernhardt-römermann M, Bijlsma R, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészaros S, Sebastià M-T, Schmidt W, Standovar T, Tothmeresz B, Uotila A, Valladares F, Vellak K, Virtanen R (2009) Biodiversity differences between managed and unmanaged forests: meta-analysis of species. Conserv Biol 24:101–112CrossRefGoogle Scholar
  57. Pakeman RJ, Quested HM (2007) Sampling plant functional traits: what proportion of the species need to be measured? Appl Veg Sci 10:91–96CrossRefGoogle Scholar
  58. Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriquez G, Harms KE, Licona J, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89:1908–1920CrossRefGoogle Scholar
  59. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588CrossRefGoogle Scholar
  60. Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaasse U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492CrossRefGoogle Scholar
  61. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  62. Ratcliffe S, Liebergesell M, Ruiz-benito P, González JM, Castañeda JMM, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Peñuelas J, Zavala MA, Wirth C (2015) Modes of functional biodiversity control on tree productivity across the European continent. Glob Ecol Biogeogr 25:251–262CrossRefGoogle Scholar
  63. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188CrossRefGoogle Scholar
  64. Schleuter D, Daufresne M (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484CrossRefGoogle Scholar
  65. Shipley B, Vile D, Garnier É (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814CrossRefGoogle Scholar
  66. Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661CrossRefGoogle Scholar
  67. Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140CrossRefGoogle Scholar
  68. Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, Elser JJ, Fagan WF, Forero-Montaña J, Fyllas N, Kraft NJB, Lake JK, Moles AT, Patiño S, Phillips OL, Price CA, Reich PB, Quesada CA, Stegen JC, Valencia R, Wright IJ, Wright SJ, Andelman S, Jørgensen PM, Lacher TE Jr, Monteagudo A, Núñez-Vargas MP, Vasquez-Martínez R, Nolting KM (2012) The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21:798–808CrossRefGoogle Scholar
  69. Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–647CrossRefGoogle Scholar
  70. Valencia E, Maestre FT, Le Bagousse-pinguet Y, Quero L, Tamme R, Borger L, García-Gómez M, Gross N (2015) Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol 206:660–671CrossRefGoogle Scholar
  71. Van De Peer T, Mereu S, Verheyen K, Costa-saura JM, Morillas L, Roales J, Lo Cascio M, Spano D, Paquette A, Muys B (2018) Tree seedling vitality improves with functional diversity in a Mediterranean common garden experiment. For Ecol Manag 409:614–633CrossRefGoogle Scholar
  72. Van Der Plas F, Ruiz-benito P, Scherer-lorenzen M, Verheyen K, Wirth C, Zavala MA, Baeten L, Benneter A, Bruelheide H, Castagneyrol B, Charbonnier Y, Johannes H, Kaendler G, Kattge J, Liebergesell M (2018) Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol Lett 21:31–42CrossRefGoogle Scholar
  73. Vidal C, Bélouard T, Hervé J, Robert N, Wolsack J (2005) A new flexible forest inventory in france. In: Proceedings of the seventh annual forest inventory and analysis symposium, pp 67–73Google Scholar
  74. Vilà M, Inchausti P, Vayreda J (2005) Confounding factors in the observational productivity–diversity relationship in forests. In: Forest diversity and function, pp 65–86Google Scholar
  75. Vila-Cabrera A, Martinez-Vilalta J, Retana J (2015) Functional trait variation along environmental gradients in temperate and Mediterranean trees. Glob Ecol Biogeogr 24:1377–1389CrossRefGoogle Scholar
  76. Wang R, Yu G, He N, Wang Q, Zhao N, Xu Z, Ge J (2015) Latitudinal variation of leaf stomatal traits from species to community level in forests : linkage with ecosystem productivity. Nat Sci Rep 5:14454CrossRefGoogle Scholar
  77. Weiher E, Keddy P (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164CrossRefGoogle Scholar
  78. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227CrossRefGoogle Scholar
  79. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268CrossRefGoogle Scholar
  80. Woodward F, Williams B (1987) Climate and plant distribution at global and local scales. Vegetatio 69:189–197CrossRefGoogle Scholar
  81. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 12:821–827CrossRefGoogle Scholar
  82. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci USA 106(Suppl):19723–19728CrossRefGoogle Scholar
  83. Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of AgricultureUniversity of SassariSassariItaly
  2. 2.IAFES DivisionEuro-Mediterranean Center on Climate ChangesSassariItaly

Personalised recommendations