Plant Ecology

, Volume 220, Issue 3, pp 393–403 | Cite as

Increased litter decomposition rates of exotic invasive species Hieracium pilosella (Asteraceae) in Southern Patagonia, Argentina

  • Karen BraunEmail author
  • M. B. Collantes
  • L. Yahdjian
  • C. Escartin
  • J. A. Anchorena


Plant invasions can affect key ecosystem processes regulating carbon and nutrient balances, i.e., litter decomposition. Exotic herb Hieracium pilosella (hawkweed, Asteraceae) recently invaded steppes of Tierra del Fuego island, Southern Patagonia, Argentina, where plant communities exhibit different vulnerabilities to invasion. To investigate H. pilosella invasion’s effects on litter decomposition, we conducted a field experiment in two plant communities, a tussock grassland and a grazing lawn, having contrasting environmental conditions and different vulnerabilities of being invaded by H. pilosella. At each community, we decomposed litter of dominant native species and of the exotic herb during 24 months. In addition, we characterized the litter qualities of the different species, and the microclimates of the communities. Exotic litter decomposition was remarkably faster and showed a higher association to microenvironmental variability compared to native litter decomposition. H. pilosella decomposed three-times faster than native litter in the moister, and more susceptible to invasion by H. pilosella plant community, the tussock grassland. By contrast, decomposition of native litter was not associated to the contrasting environmental conditions of the studied communities. Results suggest that introduced species may exhibit different ecosystem process rates and controls compared to resident species, affecting ecosystem nutrient and carbon cycles.


Carbon cycle Grasslands Litter decomposition Ecosystem process Plant invasions 



Vapor pressure deficit


Mean annual precipitation



We thank Jose Bonilla for excellent field assistance, and Mariana Capdet, Guadalupe de la Peña, and Ruth Rauber for laboratory assistance. Amy Austin made valuable suggestions at early stages of this project, and Roberto Fernandez Aldúcin gave useful insights into the microclimatic data. The studies reported in this article comply with the ethics guidelines and the current laws of the Republic of Argentina. This work and K.B.’s doctoral fellowship were supported by the Agencia Nacional de Promoción Científica y Tecnológica (BID-PICT 14198 and PICT 2010 0553).


  1. Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia 141:612–619CrossRefGoogle Scholar
  2. Ashton IW et al (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Applications 15:1263–1272CrossRefGoogle Scholar
  3. Austin AT, Vivanco L (2006) Plant litter decomposition in semi-arid ecosystems controlled by photodegradation. Nature 442:555–558CrossRefGoogle Scholar
  4. Austin AT et al (2009) Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90:2642–2647CrossRefGoogle Scholar
  5. Bishop GF, Davy AJ (1994) Hieracium pilosella L. (Pilosella officinarum F. Schultz and Schultz-Bip.). J Ecol 82:195–210CrossRefGoogle Scholar
  6. Braun K (2009) Efectos del pastoreo, el ambiente y las invasiones sobre procesos de la estepa fueguina. Dissertation. Universidad de Buenos AiresGoogle Scholar
  7. Braun K et al (2010) Relevamiento de especies nativas y exóticas del género Hieracium en la provincia de Santa Cruz. Informe Técnico CFI (Consejo Federal de Inversiones)Google Scholar
  8. Bontti EE et al. (2009) Litter decomposition in grasslands of Central North America (US Great Plains). Glob Chang Biol 15:1356–1363CrossRefGoogle Scholar
  9. Castro-Díez P et al (2009) Effects of exotic invasive trees on nitrogen cycling, a case study in Central Spain. Biol Invasions 11:1973–1986CrossRefGoogle Scholar
  10. Cepeda-Pizarro JG, Whitford WG (1990) Decomposition patterns of surface leaf litter of six plant species along a Chihuahuan Desert Watershed. Am Midland Nat 123:319–330CrossRefGoogle Scholar
  11. Chapman SK, Koch GW (2007) What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 299(1–2):153–162CrossRefGoogle Scholar
  12. Cingolani AM et al (1998) Landscape heterogeneity and long-term animal productivity. A case study of a sheep ranch in Tierra del Fuego. J. Range Manage 51:79–87CrossRefGoogle Scholar
  13. Cipriotti PA et al (2010) Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia. Biol Invasions 12:2523–2535CrossRefGoogle Scholar
  14. Cipriotti PA et al (2012) Control measures for a recent invasion of Hieracium pilosella in Southern Patagonian rangelands. Weed Res 52:98–105CrossRefGoogle Scholar
  15. Cipriotti PA et al (2018) La pilosela o velosilla (Hieracium pilosella L.) en campos de pastoreo de la Patagonia Austral. In: Malezas e Invasoras de la Rep. Argentina, Tomo III “Historia y Biología de las Malezas Argentinas” In: O Fernández, E Leguizamón and H Acciaresi (Eds). Editorial Universidad Nacional del Sur, Bahía Blanca, Argentina, pp 449-471Google Scholar
  16. Collantes MB, Anchorena J (1993) Las malezas exóticas y plantas escapadas de cultivo en la región de estepa de Tierra del Fuego. Parodiana 8:213–217Google Scholar
  17. Collantes MB et al (1999) The steppes of Tierra del Fuego, floristic and lifeform patterns controlled by soil fertility and moisture. Plant Ecol 140:61–75CrossRefGoogle Scholar
  18. Conant RT et al (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biol 14:868–877CrossRefGoogle Scholar
  19. Cornwell WK et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1461–2248CrossRefGoogle Scholar
  20. Coughenour MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard Ann Missouri Bot Gard 72:852–863CrossRefGoogle Scholar
  21. Couteaux MM et al (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66CrossRefGoogle Scholar
  22. Covacevich N (2009) Magallanes: veinte años de pilosella. Rev Tierra Adentro 83:40–41Google Scholar
  23. Ehrenfeld JG (2003) Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  24. Epstein H et al (2002) Regional patterns of decomposition and primary production rates in the US Great Plains. Ecology 83:320–327Google Scholar
  25. Fierer N et al (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326CrossRefGoogle Scholar
  26. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104(2):230–246CrossRefGoogle Scholar
  27. Godoy O et al (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790CrossRefGoogle Scholar
  28. González G, Seastedt TR (2001) Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964CrossRefGoogle Scholar
  29. Harmon ME et al (1999) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, Oxford, pp 202–240Google Scholar
  30. Jackson ML (1981) Análisis químico de suelos. Omega, SpainGoogle Scholar
  31. Koremblit G, Forte Lay JA (1991) Contribución al estudio agroclimático del norte de Tierra del Fuego (Argentina). Anales Instituto de la Patagonia, Serie de Ciencias Naturales 20:125–134Google Scholar
  32. León RJC et al (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8:125–144Google Scholar
  33. Levine JM et al (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond 270:775–781CrossRefGoogle Scholar
  34. Liao C et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phyt 177(3):706–714CrossRefGoogle Scholar
  35. Livraghi E et al (1998) Documento de trabajo sobre Hieracium pilosella L. Informe Técnico INTAGoogle Scholar
  36. McIntosh PD, Loeseke M, Bechler K (1995) Soil changes under mouse-ear hawkweed (Hieracium pilosella). N Z J Ecol 19:29–34Google Scholar
  37. Meentemeyer V (1978) Macroclimate and Lignin Control of Litter Decomposition Rates. Ecology 59:465–472CrossRefGoogle Scholar
  38. Melillo JM et al (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626CrossRefGoogle Scholar
  39. Montaña C et al (1988) The decomposition of litter in grasslands of northern Mexico: a comparison between arid and non-arid environments. J Arid Environ 14:55–60CrossRefGoogle Scholar
  40. Moorhead DL, Reynolds JF (1989) Mechanisms of surface litter mass loss in the northern Chihuahuan desert: a reinterpretation. J Arid Environ 16:157–163CrossRefGoogle Scholar
  41. Olson JS (1963) Energy storage, the balance of producers and decomposers in ecological systems Ecology 44:332-331Google Scholar
  42. Posse G et al (2000) Spatial micro-patterns in the steppe of Tierra del Fuego induced by sheep grazing. J Veg Sci 11:43–50CrossRefGoogle Scholar
  43. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99CrossRefGoogle Scholar
  44. Rauber RB (2011) Invasión de Hieracium pilosella en pastizales de Tierra del Fuego. Dissertation, Universidad de Buenos AiresGoogle Scholar
  45. Rauber RB et al (2013) Biotic and abiotic constraints to plant invasion in temperate grasslands. Austral Ecol. 38:436–442. CrossRefGoogle Scholar
  46. Rauber RB et al (2014) Local and intermediated-intensity soil disturbances increase the colonization and expansion dynamics of an invasive plant in Southern Patagonian rangelands. Plant Commun Ecol 15(1):87–93CrossRefGoogle Scholar
  47. Rauber RB et al (2016) Regional Suitability Assessment for the Mouse ear Hawkweed (Hieracium pilosella) Invasion in Patagonian Rangelands. Invas Plant Sci Manag 9:242–251Google Scholar
  48. Risch A et al (2007) Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant Soil 298:191–201CrossRefGoogle Scholar
  49. Ritcher M (1980) Mejoras en la determinación de amonio por destilación. Rev. Fac. Agr. 1(2):1–9Google Scholar
  50. Robertson GP, Paul EA (2000) Decomposition and soil organic matter dynamics. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 104–116CrossRefGoogle Scholar
  51. Saggar S et al (1999) Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol Fertil Soils 30:232CrossRefGoogle Scholar
  52. Schimel JP et al (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 31:831–838CrossRefGoogle Scholar
  53. Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of invasion in Newzealand's grazed tussock grasslands: sustainable implications. Ecol Appl 11(5):1311–1322CrossRefGoogle Scholar
  54. Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. The Bot Rev 43:449–528CrossRefGoogle Scholar
  55. Spirito F et al (2014) Soil ecosystem function under native and exotic plant assemblages as alternative states of successional grasslands. Acta Oecol 54:4–12CrossRefGoogle Scholar
  56. Standish RJ et al. (2004) Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol Inv 6:71–81CrossRefGoogle Scholar
  57. Suding KN et al (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol and Evol 19:46–53CrossRefGoogle Scholar
  58. Swift MJ et al (1979) Decomposition in terrestrial ecosystems. University of California Press, BerkeleyGoogle Scholar
  59. Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93:345–354CrossRefGoogle Scholar
  60. Taylor BR et al (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104CrossRefGoogle Scholar
  61. Treskonova M (1991) Changes in the structure of tall tussock grasslands and infestation by species of Hieracium in the Mackenzie Country, New Zealand. NZ J Ecol 15:65–78Google Scholar
  62. Van Soest PJ (1963) Use of detergents in analysis of fibrous feed II: A rapid method for the determination of fiber and lignin. Assoc Off Anal Chemist 46:829–835Google Scholar
  63. Vander Kloet SP (1978) Biogeography of Hieracium pilosella L. in North America with special reference to Nova Scotia. Proc N S Inst Sci 28:127–134Google Scholar
  64. Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265CrossRefGoogle Scholar
  65. Vitousek PM et al (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804CrossRefGoogle Scholar
  66. Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736CrossRefGoogle Scholar
  67. Waldrop MP, Firestone MK (2004) Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138:275–284CrossRefGoogle Scholar
  68. Wall DH (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate dependent. Glob Chang Biol 14:1–17Google Scholar
  69. Walter H, Box EO (1983) Climate of Patagonia. In: West NE (ed) Ecosystems of the World, Temperate deserts and semi-deserts. Elsevier, Amsterdam, pp 432–435Google Scholar
  70. Winkler E, Stöcklin J (2002) Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation model. Ann Bot 89:525–536CrossRefGoogle Scholar
  71. Yahdjian L et al (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe. Ecosystems 9:128–141CrossRefGoogle Scholar
  72. Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos. Rest Ecol 12(1):44–51CrossRefGoogle Scholar
  73. Zhang D et al (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratorio de Ecología de PastizalesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia”– CONICETBuenos AiresArgentina
  2. 2.IFEVA-CONICET, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations