Advertisement

Plant Ecology

, Volume 219, Issue 3, pp 261–276 | Cite as

Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts

  • Patryk CzortekEmail author
  • Amy E. Eycott
  • John-Arvid Grytnes
  • Anna Delimat
  • Jutta Kapfer
  • Bogdan Jaroszewicz
Article

Abstract

Changes in the local flora of mountains are often explained by climate warming, but changes in grazing regimes may also be important. The aim of this study was to evaluate whether the alpine flora on summits in the Tatra Mts, Poland and Slovakia, has changed over the last 100 years, and if the observed changes are better explained by changes in sheep grazing or climate. We resurveyed the flora of 14 mountain summits initially investigated in the years 1878–1948. We used ordination methods to quantify changes in species composition. We tested whether changes in plant species composition could be explained by cessation of grazing and climate change, and whether these factors have influenced shifts in Ellenberg’s plant ecological indicator values and Raunkiaer’s life forms. Changes in alpine flora were greater on lower elevation summits, and lower on summits less accessible for sheep. More accessible summits were associated with a decrease in mean values of plant species’ light ecological indicator values over time, and a concurrent increase in temperature and nitrogen ecological indicator values. No significant relationships were found between accessibility for sheep and changes in Raunkiaer’s life-forms. Greater accessibility for sheep (meaning high historical grazing pressure) led to greater compositional changes of mountain summits compared with summits with low accessibility. Our results suggest that cessation of sheep grazing was the main factor causing changes in the species composition of resurveyed mountain summits in the Tatra Mts, while climate change played a more minor role.

Keywords

Flora resurvey Mountain summit Grazing abandonment Climate warming Species composition change 

Notes

Acknowledgements

The research leading to these results received funding from the Polish–Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of project KlimaVeg, Contract No. Pol-Nor/196,829/87/2013. We are very grateful to employees of the Tatra National Park for their great help in our field work: mgr inż. Blažena Sedláková and dr inż. Tomasz Zwijacz-Kozica. We are grateful to the four anonymous reviewers for their very helpful comments.

Supplementary material

11258_2018_794_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
11258_2018_794_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
11258_2018_794_MOESM3_ESM.xlsx (57 kb)
Supplementary material 3 (XLSX 56 kb)
11258_2018_794_MOESM4_ESM.docx (7.6 mb)
Supplementary material 4 (DOCX 7826 kb)
11258_2018_794_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 15 kb)
11258_2018_794_MOESM6_ESM.docx (3.3 mb)
Supplementary material 6 (DOCX 3425 kb)

References

  1. Adler P, Raff D, Lauenroth W (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128(4):465–479.  https://doi.org/10.1007/s004420100737 CrossRefPubMedGoogle Scholar
  2. Amezaga I, Mendarte S, Albizu I, Besga G, Garbisu C, Onaindia M (2004) Grazing intensity aspect and slope effects on limestone grassland structure. J Range Manage 57(6):606–612CrossRefGoogle Scholar
  3. Ameztegui A, Coll L, Brotons L, Ninot JM (2015) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr 25:263–273.  https://doi.org/10.1111/geb.12407 CrossRefGoogle Scholar
  4. Austrheim G, Eriksson O (2001) Plant species diversity and grazing in the Scandinavian mountains—patterns and processes at different spatial scales. Ecography 24(6):683–695.  https://doi.org/10.1111/j.1600-0587.2001.tb00530.x CrossRefGoogle Scholar
  5. Austrheim G, Mysterud A, Pedersen B, Halvorsen R, Hassel K, Evju M (2008) Large scale experimental effects of three levels of sheep densities on an alpine ecosystem. Oikos 117:837–846.  https://doi.org/10.1111/j.2008.0030-1299.16543.x CrossRefGoogle Scholar
  6. Baeten L, Hermy M, Van Daele S, Verheyen K (2010) Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J Ecol 98:1447–1453.  https://doi.org/10.1111/j.1365-2745.2010.01711.x CrossRefGoogle Scholar
  7. Başnou C, Pino J, Šmilauer P (2009) Effect of grazing on grasslands in the Western Romanian Carpathians depends on the bedrock type. Preslia 81(2):91–104Google Scholar
  8. Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes, irrespective of the past disturbance regime. J Biogeogr 37:1938–1950.  https://doi.org/10.1111/j.1365-2699.2010.02348.x Google Scholar
  9. Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania (Romania). Biol Conserv 132:261–273.  https://doi.org/10.1016/j.biocon.2006.04.018 CrossRefGoogle Scholar
  10. Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use studies along elevational gradients. Mt Res Dev 27:58–65. https://doi.org/10.1659/0276-4741(2007)27[58:EALUSA]2.0.COGoogle Scholar
  11. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59.  https://doi.org/10.1890/08-1140.1 CrossRefPubMedGoogle Scholar
  12. Britton AJ, Beale CM, Towers W, Hewison RL (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biol Conserv 142:1728–1739.  https://doi.org/10.1016/j.biocon.2009.03.010 CrossRefGoogle Scholar
  13. Burg S, Rixen C, Stöckli V, Wipf S (2015) Observation bias and its causes in botanical surveys on high-alpine summits. J Veg Sci 26:191–200.  https://doi.org/10.1111/jvs.12211 CrossRefGoogle Scholar
  14. Camarero JJ, Gutiérrez E (2007) Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian system (NE Spain). Arct Antarct Alp Res 39(2):210–217CrossRefGoogle Scholar
  15. Campagnaro T, Frate L, Carranza ML, Sitzia T (2017) Multi-scale analysis of alpine landscapes with different intensities of abandonment reveals similar spatial pattern changes: implications for habitat conservation. Ecol Indic 74(19):147–159.  https://doi.org/10.1016/j.ecolind.2016.11.017 CrossRefGoogle Scholar
  16. Carbognani M, Tomaselli M, Petraglia A (2014) Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Bot 124:105–113.  https://doi.org/10.1007/s00035-014-0135-x CrossRefGoogle Scholar
  17. Carpenter W, Goodenough A (2014) How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities. Commun Ecol 15:1–11.  https://doi.org/10.1556/ComEc.15.2014.1.1 CrossRefGoogle Scholar
  18. Casas C, Ninot JM (2003) Correlation between species composition and soil properties in the pastures of Plana de Vic (Catalonia, Spain). Acta Bot Barc 49:291–310Google Scholar
  19. Chelli S, Wellstein C, Campetella G, Canullo R, Tonin R, Zerbe S, Gerdol R (2017) Climate change response of vegetation across climatic zones in Italy. Clim Res 71:249–262.  https://doi.org/10.3354/cr01443 CrossRefGoogle Scholar
  20. Chemini C, Rizzoli A (2003) Land use change and biodiversity conservation in the Alps. J Mt Ecol 7:1–7Google Scholar
  21. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026.  https://doi.org/10.1126/science.1206432 CrossRefPubMedGoogle Scholar
  22. Chytrý M, Hejcman M, Hennekens SM, Schellberg J (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment Germany. Appl Veg Sci 12:167–176.  https://doi.org/10.1111/j.1654-109x.2009.01011.x CrossRefGoogle Scholar
  23. Czortek P, Delimat A, Dyderski MK, Zięba A, Jagodziński AM, Jaroszewicz B (2017) Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—a rare arctic-alpine species in the Tatra Mts. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2017.10.001 PubMedGoogle Scholar
  24. Drozdowski A, Groblewska S, Karkoszka W, Kolowca J, Korosadowicz Z, Nowak M, Podobiński L, Węglarska B (1961) Hodowla owiec i bydła w Tatrach Polskich i na Podhalu. In: Antosiewicz W (eds.) Pasterstwo Tatr Polskich i Podhala Tom III. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp. 82–99Google Scholar
  25. Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417.  https://doi.org/10.1046/j.1365-2699.2003.00839.x CrossRefGoogle Scholar
  26. Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps (Austria). Arct Antarct Alp Res 354:434–441CrossRefGoogle Scholar
  27. Dupré C, Diekmann M (2001) Differences in species richness and life–history traits between grazed and abandoned grasslands in southern Sweden. Ecography 24:275–286.  https://doi.org/10.1111/j.1600-0587.2001.tb00200.x CrossRefGoogle Scholar
  28. Durak T, Żywiec M, Kapusta P, Holeksa J (2015) Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For Ecol Manag 339:127–135.  https://doi.org/10.1016/j.foreco.2014.12.014 CrossRefGoogle Scholar
  29. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258Google Scholar
  30. Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341.  https://doi.org/10.1111/j.1365-2486.2010.02393.x CrossRefGoogle Scholar
  31. Erschbamer B, Unterluggauer P, Winkler E, Mallaun M (2011) Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83:387–401Google Scholar
  32. Euro + Med (2006–) Euro + Med Plant Base—the information resource for Euro-Mediterranean plant diversity. Published in the Internet https://ww2.bgbmorg/EuroPlusMed/ Accessed 23 Oct 2017
  33. Evangelista A, Frate L, Carranza ML, Attorre F, Pelino G, Stanisci A (2016) Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants 8:plw004.  https://doi.org/10.1093/aobpla/plw004 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Evju M, Austrheim G, Halvorsen R, Mysterud A (2009) Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia 161:77–85.  https://doi.org/10.1007/s00442-009-1358-1 CrossRefPubMedGoogle Scholar
  35. Felde VA, Kapfer J, Grytnes J-A (2012) Upward shift in elevational plant species ranges in Sikkilsdalen (central Norway). Ecography 35:922–932.  https://doi.org/10.1111/j.1600-0587.2011.07057.x CrossRefGoogle Scholar
  36. Figuła K, Lenkiewicz W, Marchlewski M, Nowak M, Śmiałkowska Z, Zwolińska Z (1960) Pastwiska podgórskie i górskie Tatr Polskich i Podhala. Teraźniejszość i przyszłość. In: Antoniewicz W (eds.) Pasterstwo Tatr Polskich i Podhala Tom II. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp. 82–116Google Scholar
  37. Filibeck G, Adams J, Brunetti M, Di Filippo A, Rosati L, Scoppola A, Piovesan G (2015) Tree ring ecological signal is consistent with floristic composition and plant indicator values in Mediterranean Fagus sylvatica forests. J Ecol 103(6):1580–1593.  https://doi.org/10.1111/1365-2745.12478 CrossRefGoogle Scholar
  38. Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas—all uphill from here? Bot Helv 120:117–128.  https://doi.org/10.1007/s00035-010-0076-y CrossRefGoogle Scholar
  39. Gąsienica-Byrcyn W (2009) Historia poznania występowanie i rozmieszczenie świstaka tatrzańskiego (Marmota m latirostris Kratochvíl 1961) w Tatrach. Chr Przyr Ojcz 65(2):99–110Google Scholar
  40. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582. https://doi.org/10.1658/1100-9233(2007)18[571:TLSITS]2.0.CO;2Google Scholar
  41. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115.  https://doi.org/10.1038/NCLIMATE1329 CrossRefGoogle Scholar
  42. Grabherr G (1982) The impact of trampling by tourists on a high altitudinal grassland in the Tyrolean Alps Austria. Vegetation 48:209–219Google Scholar
  43. Grytnes J-A, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K, Odland A, Ohlson M, Wipf S, Birks HJB (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Glob Ecol Biogeogr 23:876–884.  https://doi.org/10.1111/geb.12170 CrossRefGoogle Scholar
  44. Hiller B, Nuebel A, Broll G, Holtmeier F-K (2005) Snowbeds on silicate rocks in the upper Engadine (Central Alps, Switzerland)—pedogenesis and interactions among soil, vegetation and snow cover. Arct Antarct Alp Res 37:465–476. https://doi.org/10.1657/1523-0430(2005)037[0465:SOSRIT]2.0.CO;2Google Scholar
  45. Hole L, Engardt M (2008) Climate change impact on atmospheric nitrogen deposition in northwestern Europe: a model study. Ambio 37(1):9–17. https://doi.org/10.1579/0044-7447(2008)37[9:CCIOAN]2.0.CO;2Google Scholar
  46. IPCC (2007) Climate change 2007 Synthesis Report https://www.ipccch/publications_and_data/publications_and_data_reportsshtml/ Accessed 23 Oct 2017
  47. IPCC (2014) Climate change 2014 Synthesis Report https://www.ipccch/publications_and_data/publications_and_data_reportsshtml/ Accessed 23 Oct 2017
  48. Jägerbrand AK, Alatalo JM (2015) Effects of human trampling on abundance and diversity of vascular plants bryophytes and lichens in alpine heath vegetation Northern Sweden. Springer Plus.  https://doi.org/10.1186/s40064-015-0876-z PubMedPubMedCentralGoogle Scholar
  49. Kaczka RJ, Lempa M, Czajka B, Janecka K, Rączkowska Z, Hreško J, Bugar G (2015) The recent timberline changes in the Tatra Mountains: a case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geogr Polon 88(2):71–83CrossRefGoogle Scholar
  50. Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A (2017) Resurveying historical vegetation data—opportunities and challenges. Appl Veg Sci 20:164–171.  https://doi.org/10.1111/avsc.12269/full CrossRefGoogle Scholar
  51. Kerr JT, Dobrowski SZ (2013) Predicting the impacts of global change on species communities and ecosystems: it takes time. Glob Ecol Biogeogr 22(3):261–263.  https://doi.org/10.1111/geb.12036 CrossRefGoogle Scholar
  52. Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 131:1–6.  https://doi.org/10.1191/0959683603hl589ft CrossRefGoogle Scholar
  53. Kliment J, Šibík J, Šibíková I, Jarolímek I, Dúbravcová Z, Uhlířová J (2010) High–altitude vegetation of the Western Carpathians—a syntaxonomical review. Biologia 656:965–989.  https://doi.org/10.2478/s11756-010-0109-4 Google Scholar
  54. Kolowca J (1955) Pasterstwo w Tatrzańskim Parku Narodowym. In: Szafer W (ed) Tatrzański Park Narodowy. Polska Akademia Nauk Zakład Ochrony Przyrody, Wydawnictwa Popularnonaukowe, Kraków, pp 245–256Google Scholar
  55. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinCrossRefGoogle Scholar
  56. Kotula B (1889) –1890 Rozmieszczenie roślin naczyniowych w Tatrach. Wydawnictwo Akademii Umiejętności, KrakówGoogle Scholar
  57. Krahulec F, Skálová H, Herben T, Hadincová V, Wildová R, Pechácková S (2001) Vegetation changes following sheep grazing in abandoned mountain meadows. Appl Veg Sci 4:97–102.  https://doi.org/10.1111/j.1654-109X.2001.tb00239.x CrossRefGoogle Scholar
  58. Kucharzyk S, Augustyn M (2010) Trwałość polan reglowych w Bieszczadzkim Parku Narodowym. Roczniki Bieszczadzkie 18:45–58Google Scholar
  59. Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. In: Levin S (ed) Encyclopedia of biodiversity, vol 4, 2nd edn. Elsevier, Oxford, pp 599–611CrossRefGoogle Scholar
  60. Lenoir J, Svenning JC (2015) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38(1):15–28.  https://doi.org/10.1111/ecog.00967 CrossRefGoogle Scholar
  61. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771.  https://doi.org/10.1126/science.1156831 CrossRefPubMedGoogle Scholar
  62. Losvik M (1999) Plant species diversity in old traditionally managed hay meadow compared to abandoned hay meadows in southwest Norway. Nord J Bot 19:473–487.  https://doi.org/10.1111/j.1756-1051.1999.tb01231.x CrossRefGoogle Scholar
  63. Matteodo M, Wipf S, Stöckli W, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett.  https://doi.org/10.1088/1748-9326/8/2/024043 Google Scholar
  64. Maycock PE, Guzik J, Janokvic J, Shevera M, Carleton TJ (2000) Composition structure and ecological aspects of mesic old growth Carpathian deciduous forests of Slovakia (Southern Poland and the Western Ukraine). Fragm Flor Geobot 45(1–2):281–321Google Scholar
  65. Michelsen O, Syverhuset AO, Pedersen B, Holten JI (2011) The impact of climate change on recent vegetation changes on Dovrefjell (Norway). Diversity 3:91–111.  https://doi.org/10.3390/d3010091 CrossRefGoogle Scholar
  66. Mirek Z (1996) Idea Tatrzańskiego Parku Narodowego—ochrona i udostępnianie. In: Mirek Z (ed) Przyroda Tatrzańskiego Parku Narodowego. Wydawnictwa Tatrzańskiego Parku Narodowego, Kraków-Zakopane, pp 27–35Google Scholar
  67. Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manag 88(1–2):93–98.  https://doi.org/10.1016/S0378-1127(96)03814-5 CrossRefGoogle Scholar
  68. Naaf T, Wulf M (2010) Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol Conserv 143:848–855.  https://doi.org/10.1016/j.biocon.2009.12.027 CrossRefGoogle Scholar
  69. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605.  https://doi.org/10.1111/j.1469-185X.2007.00027.x CrossRefPubMedGoogle Scholar
  70. Olden JD, Le Roy PN, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.  https://doi.org/10.1016/j.tree.2003.09.010 CrossRefPubMedGoogle Scholar
  71. Onipchenko VG, Blinnikov MS, Gerasimova MA, Volkova EV, Cornelissen JHC (2009) Experimental comparison of competition and facilitation in alpine communities varying in productivity. J Veg Sci 20(4):718–727.  https://doi.org/10.1111/j.1654-1103.2009.01075.x CrossRefGoogle Scholar
  72. Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107.  https://doi.org/10.1016/j.baae.2007.01.005 CrossRefGoogle Scholar
  73. Paryski WH (1959) Szlaki Pasterskie w Tatrach i na Podtatrzu. In: Antoniewicz W (ed) Pasterstwo Tatr Polskich i Podhala Tom I. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp 147–160Google Scholar
  74. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel Tyrol Austria. Glob Change Biol 13:147–156.  https://doi.org/10.1111/j.1365-2486.2006.01282.x CrossRefGoogle Scholar
  75. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355.  https://doi.org/10.1126/science.1219033 CrossRefPubMedGoogle Scholar
  76. Pavlů V, Hejcman M, Pavlů L, Gaisler J, Nežerková P, Guerovich Andaluz M (2005) Vegetation changes after cessation of grazing management in the Jizerské Mountains (Czech Republic). Ann Bot Fen 42:343–349Google Scholar
  77. Pavlů V, Hejcman M, Pavlů L, Gaisler J (2007) Restoration of grazing management and its effect on vegetation in an upland grassland. Appl Veg Sci 10:375–382.  https://doi.org/10.1111/j.1654-109X.2007.tb00436.x CrossRefGoogle Scholar
  78. Pawłowski B (1956) Flora Tatr Tom I. Państwowe Wydawnictwo Naukowe, WarszawaGoogle Scholar
  79. R Core Team (2017) R: a language and environment for statistical computing R Foundation for Statistical Computing ViennaGoogle Scholar
  80. Radwańska-Paryska Z, Paryski WH (1995) Wielka encyklopedia tatrzańska. Wydawnictwa Górskie, PoroninGoogle Scholar
  81. Raunkiaer C (1905) Types biologiques pour la geographie botanique. Overs. Kongel. Danske Vidensk. Selsk. Forh. Medlemmers Arbeider 5:347–437Google Scholar
  82. Renetzeder C, Knoflacher M, Loibl W, Wrbka T (2010) Are habitats of Austrian agricultural landscapes sensitive to climate change? Landsc Urban Plan 98(3–4):150–159.  https://doi.org/10.1016/j.landurbplan.2010.08.022 CrossRefGoogle Scholar
  83. Ross LC, Woodin SJ, Hester AJ, Thompson DBA, Birks HJB (2012) Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. J Veg Sci 23:755–770.  https://doi.org/10.1111/j.1654-1103.2012.01390.x CrossRefGoogle Scholar
  84. Sagorski E, Schneider G (1891) Flora der Centralkarpathen. Verlag von Eduard Kummer, LeipzigGoogle Scholar
  85. Sandvik SM, Odland A (2014) Changes in alpine snowbed-wetland vegetation over three decades in northern Norway. Nord J Bot 32:377–384.  https://doi.org/10.1111/j.1756-1051.2013.00249.x CrossRefGoogle Scholar
  86. Scherrer P, Pickering CM (2006) Recovery of alpine herbfield on a closed walking track in the Kosciuszko Alpine Zone Australia. Arct Antarct Alp Res 38(2):239–248CrossRefGoogle Scholar
  87. Sheil D (2016) Disturbance and distributions: avoiding exclusion in a warming world. Ecol Soc 2:10.  https://doi.org/10.5751/ES-07920-210110 CrossRefGoogle Scholar
  88. Sitzia T, Semenzato P, Trentanovi G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag 259:1354–1362.  https://doi.org/10.1016/j.foreco.2010.01.048 CrossRefGoogle Scholar
  89. Siwicki M, Paryski WH, Gogoc A, Cukierski M, Czajka W, Scheiki-Bińkowska M, Podoba K, Krzywańska E (2002–2003) Tatry Zachodnie słowackie i polskie Mapa turystyczna 1: 25,000 Wydawnictwo Kartograficzne POLKART, Warszawa–Zielona Góra–ZakopaneGoogle Scholar
  90. Siwicki M, Paryski WH, Gogoc A, Cukierski M, Czajka W, Scheiki-Bińkowska M, Podoba K, Krzywańska E, (2003–2004) Tatry Wysokie słowackie i polskie Mapa turystyczna 1: 25,000. Wydawnictwo Kartograficzne POLKART, Warszawa–Zielona Góra–ZakopaneGoogle Scholar
  91. Smart SM, Scott WA (2009) Bias in Ellenberg indicator values—problems with detection of the effect of vegetation type. J Veg Sci 15(6):843–846.  https://doi.org/10.1111/j.1654-1103.2004.tb02327.x Google Scholar
  92. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2012) Elevational advance of alpine plant communities is buffered by herbivory. J Veg Sci 23:617–625.  https://doi.org/10.2307/23251339 CrossRefGoogle Scholar
  93. Stanisci A, Frate L, Morra Di Cella U, Pelino G, Petey M, Siniscalco C, Carranza ML (2016) Short term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosyst 150(2):227–235.  https://doi.org/10.1080/11263504.2014.968232 CrossRefGoogle Scholar
  94. Steel EA, Kennedy MC, Cunningham PG, Stanovick JS (2013) Applied statistics in ecology: common pitfalls and simple solutions. Ecosphere 4(9):115.  https://doi.org/10.1890/es13-00160.1 CrossRefGoogle Scholar
  95. Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol Div 4(4):415–425.  https://doi.org/10.1080/17550874.2011.651504 CrossRefGoogle Scholar
  96. Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  97. Vassilev K, Pedashenko H, Nikolov SC, Apostolova I, Dengler J (2011) Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts (Bulgaria). Plant Biosyst 145(3):654–665.  https://doi.org/10.1080/11263504.2011.601337 CrossRefGoogle Scholar
  98. Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR (2008) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19:671–680.  https://doi.org/10.3170/2008-8-18434 CrossRefGoogle Scholar
  99. Wesołowska M (2009) Zmiany roślinności łąkowej Tatr Zachodnich i ich przedpola w ciągu ostatniego półwiecza. In: Guzik M (ed) Długookresowe zmiany w przyrodzie i użytkowaniu TPN. Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane, pp 91–104Google Scholar
  100. Winkler M, Lamprecht A, Steinbauer K, Hüber K, Theurillat JP, Breiner F, Choler P et al (2016) The rich sides of mountain summits—a pan-European view on aspect preferences of alpine plants. J Biogeogr 43(11):2261–2273.  https://doi.org/10.1111/jbi.12835 CrossRefGoogle Scholar
  101. Witkowska-Żuk L, Ciurzycki W (2000) Sukcesja roślinności na terenach wyłączonych z wypasu owiec w Tatrzańskim Parku Narodowym w latach 1965–1994. Ochrona Przyrody 57:19–40Google Scholar
  102. Wojterska M, Wojterski T (2007) Zróżnicowanie zbiorowisk ziołorośli i traworośli w Dolinie Roztoki w Tatrach Wysokich. In: Kępczyńska E, Kępczyński J (ed) Botanika w Polsce - sukcesy problemy perspektywy. Streszczenia referatów i plakatów 54 Zjazd PTB, Szczecin, p 109Google Scholar
  103. Zarzycki K, Trzcińska-Tacik H, Różanski W, Szeląg Z, Wołek J, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. W Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  104. Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci 23(3):419–431.  https://doi.org/10.1111/j.1654-1103.2011.01366.x CrossRefGoogle Scholar
  105. Zięba F, Zwijacz Kozica T (2004) Capy kozy i koźlęta czyli prawie wszystko o kozicach. Tatrzański Park Narodowy, ZakopaneGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Białowieża Geobotanical Station, Faculty of BiologyUniversity of WarsawBiałowieżaPoland
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.W. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
  4. 4.Norwegian Institute of Bioeconomy ResearchTromsøNorway

Personalised recommendations