Plant Ecology

, Volume 218, Issue 8, pp 1021–1033 | Cite as

Are changes in remotely sensed canopy cover associated to changes in vegetation structure, diversity, and composition in recovered tropical shrublands?

  • Alma Juliana Lomelí Jiménez
  • Diego Rafael Pérez-Salicrup
  • Blanca Lorena Figueroa Rangel
  • Manuel E. Mendoza-Cantú
  • Ramón Cuevas Guzmán
  • Ellen Andresen
  • Jorge Eduardo Morfín Ríos
Article
  • 182 Downloads

Abstract

The recovery of vegetation cover is a process that has important implications for the conservation of biodiversity and ecosystem services. Generally, the recovery of vegetation cover is documented over large areas using remote sensing, and it is often assumed that ecosystem properties and processes recover along with remotely sensed canopy cover. Here we analyze and compare the structure, composition, and diversity of trees and shrubs among plots established in a stratified random sampling design over four remotely sensed canopy cover change (CCC) categories defined according to a gradient in the percent of canopy cover. Plots were located in the Lake Cuitzeo basin (Mexico), where canopy recovery associated with agricultural abandonment has occurred in recent decades (1975–2000). We found that diversity measures, basal area, tree and shrub density, ground-truthed canopy cover, and mean plant height increased with increasing CCC category. However, Shannon index (H′) was lower in the CCC category with the most closed canopy cover category than in plots apparently not affected by agriculture. Furthermore, ordination analyses showed that composition of dominant species were not associated with CCC categories. Our results suggest that canopy closure in our study area is not associated with the recovery of species diversity, and does not result in similar species dominance as in sites not affected by agriculture.

Keywords

Michoacán Secondary vegetation Shrubland Tropical dry forests 

Notes

Acknowledgements

We thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the graduate fellowship awarded to Alma J. Lomelí for studies within the Programa de Nacional de Posgrados de Calidad (PNPC). Fieldwork was funded through the project PAPITT of UNAM (No. IN304408). We thank the people who helped with fieldwork: Hugo Arévalo, José María Michel, Eloy Padilla, Pavka Patiño, Mariana Cantú, Mariano Torres, Alberto Ortiz, Rafael Aguilar, Carmen Godínez, Leonardo Martínez, Franco Ambas, and Víctor Aguilar. We thank the staff of the ZEA herbarium and Laboratorio de Manejo Forestal del Departamento de Ecología y Recursos Naturales de la Universidad de Guadalajara, for logistical support. We want to thank two anonymous reviewers for their comments to a previous version of this manuscript.

Supplementary material

11258_2017_750_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
11258_2017_750_MOESM2_ESM.doc (40 kb)
Supplementary material 2 (DOC 39 kb)
11258_2017_750_MOESM3_ESM.doc (518 kb)
Supplementary material 3 (DOC 518 kb)
11258_2017_750_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 14 kb)
11258_2017_750_MOESM5_ESM.doc (85 kb)
Supplementary material 5 (DOC 85 kb)
11258_2017_750_MOESM6_ESM.doc (47 kb)
Supplementary material 6 (DOC 47 kb)
11258_2017_750_MOESM7_ESM.doc (132 kb)
Supplementary material 7 (DOC 131 kb)

References

  1. Alvarez-Añorve MY, Quesada M, Sánchez-Azofeifa GA, Avila-Cabadilla LD, Gamon JA (2012) Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. Am J Bot 99:816–826CrossRefPubMedGoogle Scholar
  2. Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C (2008) Variation in vegetation structure and soil properties related to land use history of old growth and secondary tropical dry forest in northwestern Mexico. For Ecol Manag 256:355–366CrossRefGoogle Scholar
  3. Andrade G, Calderón G, Camargo-Ricalde SL, Grether R, Hernández HM, Martínez-Bernal A, Rico L, Rzedowski J, Sousa MS (2007) Familia Leguminosae: subfamilia Mimosoideae. Flora del Bajío y de Regiones Adyacentes, Instituto de Ecología ACGoogle Scholar
  4. Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon RL, Meave JA, Norden N, Santos BA, Leal IR, Tabarelli M (2015) Multiple successional pathways in human modified landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev Camb Philos Soc. doi: 10.1111/brv.12231 PubMedGoogle Scholar
  5. Atkinson EE, Marín-Spiotta E (2015) Land use legacy effects on structure and composition of subtropical dry forest in St. Croix, U.S. Virgin Islands. For Ecol Manag 335:270–280CrossRefGoogle Scholar
  6. Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J Forest 64:691–692Google Scholar
  7. Bravo-Garza MR, Bryan RB (2005) Soil properties along cultivation and fallow time sequences on vertisols in Northeastern Mexico. Soil Sci Soc Am J 69:473–481CrossRefGoogle Scholar
  8. Butzer KW, Butzer EK (1997) The “natural” vegetation of the Mexican Bajío: archival documentation of a 16th-century savanna environment. Quatern Int 43(44):161–172CrossRefGoogle Scholar
  9. Calderón-Aguilera LE, Rivera-Monroy VH, Porter-Bolland L, Martínez-Yrízar A, Ladah LB, Martínez-Ramos M, Alcocer J, Santiago-Pérez AL, Hernandez-Arana HA, Reyes-Gómez VM, Pérez-Salicrup DR, Díaz-Nuñez V, Sosa-Ramírez J, Herrera-Silveira J, Búrquez A (2012) An assessment of natural and human disturbance effects on Mexican ecosystems: current trends and research gaps. Biodivers Conserv 21:589–617CrossRefGoogle Scholar
  10. Canfield RH (1941) Application of the line interception method in sampling range vegetation. J For 39:388–394Google Scholar
  11. Carranza E (2008) Diversidad del género Ipomoea L. (Convolvulaceae) en el Estado de Michoacán, México. Flora del Bajío y de Regiones Adyacentes, Instituto de Ecología ACGoogle Scholar
  12. Castillo-Campos G, Halffter G, Moreno CE (2008) Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape. Biodivers Conserv 17:1701–1714CrossRefGoogle Scholar
  13. Cházaro M (1977) El Huizache Acacia pennatula (Schelecht and Cham.) Benth. una invasora del Centro de Veracruz. Biótica 2:1–18Google Scholar
  14. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Sys 6:51–71CrossRefGoogle Scholar
  15. Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B (2007) Rates of change in tree communities of secondary neotropical forests following major disturbances. Phil Trans R Soc 362:273–289CrossRefGoogle Scholar
  16. Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, Stork NE, Miller SE (2009) The potential for species conservation in tropical secondary forest. Conserv Biol 23:1406–1417CrossRefPubMedGoogle Scholar
  17. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727CrossRefGoogle Scholar
  18. Crk T, Uriarte M, Corsi F, Flynn D (2009) Forest recovery in a tropical landscape: what is the relative importance of biophysical, socioeconomic, and landscape variables? Landsc Ecol 24:629–642CrossRefGoogle Scholar
  19. Cué EV, Villaseñor JL, Arredondo L, Cornejo G, Ibarra G (2006) La flora arbórea de Michoacán, México. Bol Soc Bot Mex 78:47–81Google Scholar
  20. Derroire G, Balvanera P, Castellanos-Castro C, Decocq G, Kennard DK, Lebrija-Trejos E, Leiva JA, Odén PC, Powers JS, Rico-Gray V, Tigabu M, Heale JR (2016) Resilience of tropical dry forest-a meta-analysis of changes in species diversity and composition during secondary succession. Oikos 125:1386–1397CrossRefGoogle Scholar
  21. Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012) Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatán, México. Biotropica 44:151–162CrossRefGoogle Scholar
  22. Enfield GH, O’Hara SL (1999) Degradation, drought, and dissent: an environmental history of colonial Michoacan, West Central Mexico. Ann Assoc Am Geogr 89:402–419CrossRefGoogle Scholar
  23. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  24. Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:1–21CrossRefGoogle Scholar
  25. Geist HJ, Lambin EF (2002) Proximate causes and underlying forces of tropical deforestation. Bioscience 52:143–150CrossRefGoogle Scholar
  26. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  27. Hernández-Oria JG (2007) Desaparición del bosque seco en el Bajío Mexicano: implicaciones del ensamblaje de especies y grupos funcionales en la dinámica de una vegetación amenazada. Zonas Áridas 11:13–31Google Scholar
  28. Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2014) Coin: conditional inference procedures in a permutation test framework. R package version 1.0–24. https://cran.r-project.org/package=coin
  29. Israde I, Velázquez-Durán R, Lozano MS, Bischoff J, Domínguez G, Garduño VH (2010) Evolución paleolimnológica del Lago de Cuitzeo, Michoacán durante el Pleistoceno-Holoceno. Bol Soc Geol Mex 62:345–357Google Scholar
  30. Janzen DH (1986) Chihuahuan desert nopaleras: defaunated big mammal vegetation. Ann Rev Ecol Syst 17:595–636CrossRefGoogle Scholar
  31. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from de FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20CrossRefGoogle Scholar
  32. Labat J (1995) Végétation du nord-ouest du Michoacán Mexique. Flora del Bajío y de Regiones adyacentes, Instituto de Ecología ACGoogle Scholar
  33. Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431CrossRefGoogle Scholar
  34. Little EL, Wadsworth FH (1964) Common trees of Puerto Rico and the Virgin Islands. Agriculture Handbook 249, United States Department of Agriculture, Forest Service, Washington, D.C.Google Scholar
  35. López E (2006) Patrones de cambio de uso del terreno en la Cuenca del Lago de Cuitzeo. Ph.D. thesis, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  36. López E, Bocco G, Mendoza M, Velázquez A, Aguirre-Guevara J (2006) Peasant emigration and land-use change at the watershed level: a GIS-based approach in Central México. Agric Syst 90:62–78CrossRefGoogle Scholar
  37. Magurran AE (2004) Measuring biological diversity, 1st edn. Blackwell Science Ltd, OxfordGoogle Scholar
  38. Martorell C, Peters EM (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biol Conserv 124:199–207CrossRefGoogle Scholar
  39. Mather AS, Needle CL (1998) The forest transition: a theoretical basis. Area 30(2):117–124CrossRefGoogle Scholar
  40. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  41. Mckinney M, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. TREE 14:450–453PubMedGoogle Scholar
  42. Mendoza ME, Bocco G, López E, Bravo M (2010) Hydrological implications of land-cover and land-use change: spatial analytical approach at regional scale in the closed basin of the Cuitzeo Lake, Michoacan, Mexico. Singap J Trop Geogr 31:197–214CrossRefGoogle Scholar
  43. Mendoza M, López E, Geneletti D, Pérez-Salicrup D, Salinas V (2011) Analysing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo watershed, México (1975–2003). Appl Geogr 31:237–250CrossRefGoogle Scholar
  44. Miceli-Mendez CL, Ferguson BG, Ramírez-Marcial N (2008) Seed dispersal by cattle: natural history and applications to neotropical forest restoration and agroforestry. In: Myster RW (ed) Post-agricultural succession in the neotropics. Springer, New York, pp 165–191CrossRefGoogle Scholar
  45. Moldenke HN (1981) Additional notes on the genus Lippia. Phytologia 48:255–270Google Scholar
  46. Olvera VM, Moreno GS, Figueroa RB (1996) Sitios permanentes para la investigación silvícola, manual para su establecimiento. Universidad de Guadalajara, GuadalajaraGoogle Scholar
  47. Ortiz-Pulido R, Rico-Gray V (2006) Seed dispersal of Bursera fagaroides (Burseraceae): the effect of linking environmental factors. Southwest Nat 51:11–21CrossRefGoogle Scholar
  48. Park J, Byrne R, Böhnel H, Molina R, Conserva M (2010) Holocene climate change and human impact, central Mexico: a record based on maar lake pollen and sediment chemistry. Quat Sci Rev 29:618–632CrossRefGoogle Scholar
  49. Putz FE, Redford KH (2010) The importance of defining “forest”: tropical forest degradation, deforestation, long-term shifts, and further transitions. Biotropica 42:10–20CrossRefGoogle Scholar
  50. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  51. Ribeiro SEM, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620CrossRefGoogle Scholar
  52. Rzedowski J, Calderón G (1987) El bosque tropical caducifolio de la región mexicana del Bajío. Trace 12:12–21Google Scholar
  53. Rzedowski J, Guevara-Féfer F (1992) Burseraceae. Flora del Bajío y de Regiones Adyacentes, Instituto de Ecología ACGoogle Scholar
  54. Rzedowski J, McVaugh R (1966) La vegetación de Nueva Galicia. Contrib Univ Mich Herb 9:1–123Google Scholar
  55. Savicky P (2014). pspearman: Spearman’s rank correlation test. R package version 0.3-0. http://CRAN.R-project.org/package=pspearman
  56. Schoeneberger PJ, Whysocki DA, Benham EC, Broderson WD (1998) Field book for describing and sampling soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, LincolnGoogle Scholar
  57. Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  58. Trejo I, Dirzo R (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodivers Conserv 11:2048–2063CrossRefGoogle Scholar
  59. Venkatraman ES (2014). Clinfun: Clinical trial design and data analysis functions. R package version 1.0.6. http://CRAN.R-project.org/package=clinfun
  60. Virmani SM, Sahrawat KL, Burford JR (1982) Physical and chemical properties of Vertisols and their management. ICRISAT library. http://oar.icrisat.org/id/eprint/4038. Accessed 6 March 2017
  61. Vitousek P, Mooney M, Harold A (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  62. Williams-Linera G, Loera F (2009) Tree species diversity driven by environmental and anthropogenic factors in tropical dry forest fragments in central Veracruz, México. Biodivers Conserv 18:3269–3293CrossRefGoogle Scholar
  63. Yeaton RI, Romero A (1986) Organization of vegetation mosaics in the Acacia shaffneri-Opuntia streptacantha association, southern Chihuahuan desert, Mexico. J Ecol 74:211–217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Alma Juliana Lomelí Jiménez
    • 1
  • Diego Rafael Pérez-Salicrup
    • 2
  • Blanca Lorena Figueroa Rangel
    • 1
  • Manuel E. Mendoza-Cantú
    • 3
  • Ramón Cuevas Guzmán
    • 1
  • Ellen Andresen
    • 2
  • Jorge Eduardo Morfín Ríos
    • 2
  1. 1.Departamento de Ecología y Recursos Naturales-IMECBIO, Centro Universitario de la Costa SurUniversidad de GuadalajaraAutlán de NavarroMexico
  2. 2.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations