Plant Ecology

, Volume 218, Issue 4, pp 417–431 | Cite as

Both spatiotemporal connectivity and habitat quality limit the immigration of forest plants into wooded corridors

  • Taavi Paal
  • Laura Kütt
  • Kertu Lõhmus
  • Jaan Liira


Extensive afforestation of agricultural areas has increased the importance of green corridors as a dispersal network. We tested the effect of spatiotemporal connectivity, edge effect and habitat structural quality of wooded corridors on the long-term immigration success of forest specialist plants relative to the performance of forest generalists. In agricultural landscapes of central and southern Estonia, we sampled 28 historically connected and 52 isolated tree lines and alleys with a minimum age of 50 years, and 93 edges of ancient forests. The regional pool of common forest plants was compiled using species’ frequency data in 91 ancient forests. Both landscape connectivity and habitat quality affected the richness of response groups, but specialists and generalists responded to different drivers. Forest specialists required long-term neighbourhoods of ancient forest and benefited from a direct connection between forest and corridor. Habitat generalists reacted positively to the recently modified structure of the landscape. When a corridor was connected to forest, the dual edge in the corridor did not result in an increased negative edge effect on forest specialist arrival. Even if both specialists and generalists required wide corridors with optimum shade, forest specialists also benefited from mature overstorey and outward overhanging branches, whereas forest generalists used disturbance-created microhabitats. We conclude that only wooded corridors with long-term connectivity to seed source forests and widely branched tree canopies will function as a green infrastructure supporting forest-specific biodiversity.


Ancient forest species Forest plant dispersal Historical ecology Landscape planning Patch-corridor-matrix system Spatiotemporal ecology 



This project was supported by the Estonian Science Agency (project no. 7878, IUT 20-31 and IUT 34-7), the ERA-Net BiodivERsA project smallFOREST and the European Union through the European Regional Development Fund (the Centre of Excellence Ecolchange). We are grateful to Robert Szava-Kovats for comments and language editing. We also thank Thomas Abeli and two anonymous reviewers for their helpful comments.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11258_2017_700_MOESM1_ESM.docx (983 kb)
Supplementary material 1 (DOCX 982 kb)


  1. Aunap R (2011) Eesti Atlas, 4th edn. Avita, TallinnGoogle Scholar
  2. Baeten L, Jacquemyn H, Van Calster H et al (2009) Low recruitment across life stages partly accounts for the slow colonization of forest herbs. J Ecol 97:109–117. doi: 10.1111/j.1365-2745.2008.01455.x CrossRefGoogle Scholar
  3. Bailey S (2007) Increasing connectivity in fragmented landscapes: an investigation of evidence for biodiversity gain in woodlands. For Ecol Manag 238:7–23. doi: 10.1016/j.foreco.2006.09.049 CrossRefGoogle Scholar
  4. Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. doi: 10.1111/j.1523-1739.1998.98036.x CrossRefGoogle Scholar
  5. Bolger DT, Scott TA, Rotenberry JT (2001) Use of corridor-like landscape structures by bird and small mammal species. Biol Conserv 102:213–224. doi: 10.1016/S0006-3207(01)00028-3 CrossRefGoogle Scholar
  6. Bossuyt B, Hermy M (2001) Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24:225–238. doi: 10.1034/j.1600-0587.2001.240213.x CrossRefGoogle Scholar
  7. Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient–recent forest ecotones in central Belgium. J Ecol 87:629–638. doi: 10.1046/j.1365-2745.1999.00379.x CrossRefGoogle Scholar
  8. Brudvig LA, Mabry CM, Mottl LM (2011) Dispersal, not understory light competition, limits restoration of Iowa woodland understory herbs. Restor Ecol 19:24–31. doi: 10.1111/j.1526-100X.2010.00675.x CrossRefGoogle Scholar
  9. Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:318–327. doi: 10.1016/S0378-1127(96)03845-5 CrossRefGoogle Scholar
  10. Brunet J, Falkengren-Grerup U, Tyler G (1996) Herb layer vegetation of south Swedish beech and oak forests—effects of management and soil acidity during one decade. For Ecol Manag 88:259–272. doi: 10.1046/j.1365-2745.1998.00269.x CrossRefGoogle Scholar
  11. Brunet J, von Oheimb G, Diekmann M (2000) Factors influencing vegetation gradients across ancient–recent woodland borderlines in southern Sweden. J Veg Sci 11:515–524. doi: 10.2307/3246581 CrossRefGoogle Scholar
  12. Butaye J, Jacquemyn H, Hermy M (2001) Differential colonization causing non-random forest plant community structure in a fragmented agricultural landscape. Ecography 24:369–380. doi: 10.1111/j.1600-0587.2001.tb00472.x CrossRefGoogle Scholar
  13. Corbit M, Marks PL, Gardescu S (1999) Hedgerows as habitat corridors for forest herbs in central New York, USA. J Ecol 87:220–232. doi: 10.1046/j.1365-2745.1999.00339.x CrossRefGoogle Scholar
  14. de Blois S, Domon G, Bouchard A (2002) Landscape issues in plant ecology. Ecography 25:244–256. doi: 10.1034/j.1600-0587.2002.250212.x CrossRefGoogle Scholar
  15. Deckers B, Hermy M, Muys B (2004) Factors affecting plant species composition of hedgerows: relative importance and hierarchy. Acta Oecol 26:23–37. doi: 10.1016/j.actao.2004.03.002 CrossRefGoogle Scholar
  16. Dennis RLH, Dapporto L, Dover JW, Shreeve TG (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22:2709–2734. doi: 10.1007/s10531-013-0540-2 CrossRefGoogle Scholar
  17. Didham RK, Lawton JH (1999) Edge Structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30. doi: 10.1111/j.1744-7429.1999.tb00113.x Google Scholar
  18. Dormann CF, McPherson JM, Araújo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi: 10.1111/j.2007.0906-7590.05171.x CrossRefGoogle Scholar
  19. Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805. doi: 10.1046/j.1365-2745.2002.00717.x CrossRefGoogle Scholar
  20. Fahey RT, Puettmann KJ (2008) Patterns in spatial extent of gap influence on understory plant communities. For Ecol Manag 255:2801–2810. doi: 10.1016/j.foreco.2008.01.053 CrossRefGoogle Scholar
  21. Forman RTT (1995) Some general principles of landscape and regional ecology. Landsc Ecol 10:133–142. doi: 10.1007/BF00133027 CrossRefGoogle Scholar
  22. Forman RT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manag 8:495–510. doi: 10.1007/BF01871575 CrossRefGoogle Scholar
  23. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  24. Fraver S (1994) Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina. Conserv Biol 8:822–832. doi: 10.1046/j.1523-1739.1994.08030822.x CrossRefGoogle Scholar
  25. Hamberg L, Lehvävirta S, Kotze DJ (2009) Forest edge structure as a shaping factor of understorey vegetation in urban forests in Finland. For Ecol Manag 257:712–722. doi: 10.1016/j.foreco.2008.10.003 CrossRefGoogle Scholar
  26. Herault B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. J Biogeogr 32:2069–2081. doi: 10.1111/j.1365-2699.2005.01351.x CrossRefGoogle Scholar
  27. Hermy M, Honnay O, Firbank L et al (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22. doi: 10.1016/S0006-3207(99)00045-2 CrossRefGoogle Scholar
  28. Hernández Á, Zaldívar P (2013) Epizoochory in a hedgerow habitat: seasonal variation and selective diaspore adhesion. Ecol Res 28:283–295. doi: 10.1007/s11284-012-1014-9 CrossRefGoogle Scholar
  29. Hess GR, Fischer RA (2001) Communicating clearly about conservation corridors. Landsc Urban Plan 55:195–208. doi: 10.1016/S0169-2046(01)00155-4 CrossRefGoogle Scholar
  30. Hobbs RJ (1992) The role of corridors in conservation: solution or bandwagon? Trends Ecol Evol 7:389–392. doi: 10.1016/0169-5347(92)90010-9 CrossRefPubMedGoogle Scholar
  31. Honnay O, Verheyen K, Hermy M (2002) Permeability of ancient forest edges for weedy plant species invasion. For Ecol Manag 161:109–122. doi: 10.1016/S0378-1127(01)00490-X CrossRefGoogle Scholar
  32. Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736. doi: 10.1111/j.1469-8137.2005.01352.x CrossRefPubMedGoogle Scholar
  33. Humphrey JW, Watts K, Fuentes-Montemayor E et al (2015) What can studies of woodland fragmentation and creation tell us about ecological networks? A literature review and synthesis. Landsc Ecol 30:21–50. doi: 10.1007/s10980-014-0107-y CrossRefGoogle Scholar
  34. Jacquemyn H, Butaye J, Hermy M (2001) Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. J Biogeogr 28:801–812. doi: 10.1046/j.1365-2699.2001.00590.x CrossRefGoogle Scholar
  35. Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 26:768–776. doi: 10.1111/j.0906-7590.2003.03620.x CrossRefGoogle Scholar
  36. Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938. doi: 10.1111/j.1523-1739.2005.00065.x CrossRefGoogle Scholar
  37. Leht M (2010) Eesti Taimede Määraja, 3rd edn. Eesti Loodusfoto, TartuGoogle Scholar
  38. Liira J, Paal T (2013) Do forest-dwelling plant species disperse along landscape corridors? Plant Ecol 214:455–470. doi: 10.1007/s11258-013-0182-1 CrossRefGoogle Scholar
  39. Liira J, Lõhmus K, Tuisk E (2012) Old manor parks as potential habitats for forest flora in agricultural landscapes of Estonia. Biol Conserv 146:144–154. doi: 10.1016/j.biocon.2011.11.034 CrossRefGoogle Scholar
  40. Liira J, Jürjendal I, Paal J (2014) Do forest plants conform to the theory of island biogeography: the case study of bog islands. Biodivers Conserv 23:1019–1039. doi: 10.1007/s10531-014-0650-5 CrossRefGoogle Scholar
  41. Lõhmus E (2004) Eesti metsakasvukohatüübid, 2nd edn. Eesti Loodusfoto, TartuGoogle Scholar
  42. Lõhmus K, Liira J (2013) Old rural parks support higher biodiversity than forest remnants. Basic Appl Ecol 14:165–173. doi: 10.1016/j.baae.2012.12.009 CrossRefGoogle Scholar
  43. Lõhmus K, Paal T, Liira J (2014) Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape—dispersal versus establishment. Ecol Evol 4:3113–3126. doi: 10.1002/ece3.1163 CrossRefPubMedPubMedCentralGoogle Scholar
  44. MacDonald MA (2003) The role of corridors in biodiversity conservation in production forest landscapes: a literature review. Tasforests 14:41–52Google Scholar
  45. Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194. doi: 10.1016/0006-3207(93)90004-K CrossRefGoogle Scholar
  46. McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag 218:1–24. doi: 10.1016/j.foreco.2005.08.034 CrossRefGoogle Scholar
  47. Meiners SJ, Pickett STA (1999) Changes in community and population responses across a forest-field gradient. Ecography 22:261–267. doi: 10.1111/j.1600-0587.1999.tb00501.x CrossRefGoogle Scholar
  48. Metzger MJ, Bunce RGH, Jongman RHG et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563. doi: 10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  49. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23. doi: 10.2307/2332142 CrossRefPubMedGoogle Scholar
  50. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62. doi: 10.1016/S0169-5347(00)88977-6 CrossRefPubMedGoogle Scholar
  51. Naaf T, Kolk J (2015) Colonization credit of post-agricultural forest patches in NE Germany remains 130–230 years after reforestation. Biol Conserv 182:155–163. doi: 10.1016/j.biocon.2014.12.002 CrossRefGoogle Scholar
  52. Nordén B, Dahlberg A, Brandrud TE et al (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45. doi: 10.2980/21-1-3667 CrossRefGoogle Scholar
  53. O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi: 10.1111/j.2041-210X.2010.00021.x CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R et al (2013) vegan: Community Ecology PackageGoogle Scholar
  55. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  56. Peppler-Lisbach C, Beyer L, Menke N, Mentges A (2015) Disentangling the drivers of understorey species richness in eutrophic forest patches. J Veg Sci 26:464–479. doi: 10.1111/jvs.12249 CrossRefGoogle Scholar
  57. Petit S, Griffiths L, Smart SS et al (2004) Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc Ecol 19:463–471. doi: 10.1023/B:LAND.0000036141.30359.53 CrossRefGoogle Scholar
  58. QGIS Development Team (2015) QGIS Geographic Information System. Open Source Geospatial FoundationGoogle Scholar
  59. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  60. Richardson JTE (2011) Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev 6:135–147. doi: 10.1016/j.edurev.2010.12.001 CrossRefGoogle Scholar
  61. Roy V, de Blois S (2008) Evaluating hedgerow corridors for the conservation of native forest herb diversity. Biol Conserv 141:298–307. doi: 10.1016/j.biocon.2007.10.003 CrossRefGoogle Scholar
  62. Schmidt M, Kriebitzsch W-U, Ewald J (2011) Waldartenlisten der Farn- und Blütenpflanzen. Moose und Flechten Deutschlands, Bundesamt für Naturschutz, BonnGoogle Scholar
  63. Sitzia T (2007) Hedgerows as corridors for woodland plants: a test on the Po Plain, northern Italy. Plant Ecol 188:235–252. doi: 10.1007/s11258-006-9159-7 CrossRefGoogle Scholar
  64. Valdés A, Lenoir J, Gallet-Moron E et al (2015) The contribution of patch-scale conditions is greater than that of macroclimate in explaining local plant diversity in fragmented forests across Europe. Glob Ecol Biogeogr 24:1094–1105. doi: 10.1111/geb.12345 CrossRefGoogle Scholar
  65. van Dorp D, Opdam PFM (1987) Effects of patch size, isolation and regional abundance on forest bird communities. Landsc Ecol 1:59–73. doi: 10.1007/BF02275266 CrossRefGoogle Scholar
  66. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  67. Wehling S, Diekmann M (2008) Factors influencing the spatial distribution of forest plant species in hedgerows of North-western Germany. Biodivers Conserv 17:2799–2813. doi: 10.1007/s10531-007-9294-z CrossRefGoogle Scholar
  68. Wehling S, Diekmann M (2009) Importance of hedgerows as habitat corridors for forest plants in agricultural landscapes. Biol Conserv 142:2522–2530. doi: 10.1016/j.biocon.2009.05.023 CrossRefGoogle Scholar
  69. Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Annu Rev Ecol Evol Syst 35:583–621CrossRefGoogle Scholar
  70. Wulf M, Kolk J (2014) Plant species richness of very small forests related to patch configuration, quality, heterogeneity and history. J Veg Sci 25:1267–1277. doi: 10.1111/jvs.12172 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Taavi Paal
    • 1
  • Laura Kütt
    • 1
  • Kertu Lõhmus
    • 1
    • 2
  • Jaan Liira
    • 1
  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany

Personalised recommendations