Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest

  • 297 Accesses

  • 3 Citations


Exotic fleshy fruited plants are often dispersed by generalist frugivores into undisturbed or weakly disturbed forests. The establishment and spread of these plants in the understory may pass unnoticed until their abundance and size turns them a nuisance. Sorbus aucuparia is a fleshy fruited tree recently established in temperate forests of northwestern Patagonia. Our aim was to determine the invasion dynamics of S. aucuparia in a Nothofagus pumilio forest. We analyzed age structure, minimum age of reproduction, the time from colonization to effective recruitment (lag time), and demographic parameters to pinpoint critical stages for management. Currently, the population of S. aucuparia is increasing. Large numbers of suppressed, potentially reproductive individuals were found. Lag time was relatively short (25 years) in comparison to other invasive woody plants. The minimum reproductive age was 10 years, and all reproductive individuals were located in high light conditions. The number of trees at the reproductive stage made the most significant contribution to population growth; a 5 % reduction in this number would be enough for the population growth rate to be negatively affected. Thus, the reproductive stage is key to the control of S. aucuparia. Forest disturbance leading to increase light availability may result in higher rates of growth and reproduction among currently suppressed individuals, triggering further expansion events and increasing the number of invasion foci. Management strategies for tree species which present an inconspicuous bank of individuals in the understory, like S. aucuparia, should focus on early detection and eradication of reproductive individuals while avoiding the increase in light availability in the affected environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Amico GC, Aizen MA (2005) Dispersión de semillas por aves en un bosque templado de Sudamérica austral: ¿quién dispersa a quién? Ecol Austral 15:89–100

  2. Amodeo MR, Zalba SM (2013) Wild cherries invading natural grasslands: unraveling colonization history from population structure and spatial patterns. Plant Ecol 214:1299–1307

  3. Aslan C, Rejmánek M (2012) Native fruit traits may mediate dispersal competition between native and non-native plants. NeoBiota 12:1–24

  4. Benton TG, Grant A (1999) Elasticity analysis as an important tool in evolutionary and population ecology. TREE 14:467–471

  5. Bolker BM (2007) Ecological models and data in R. Princeton University Press, Oxford

  6. Bongers F, Popma J (1988) Trees and gaps in a Mexican tropical rain forest: species differentiation in relation to gap-associated environmental heterogeneity. Ph.D. Thesis. University of Utrecht, Utrecht

  7. Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

  9. Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol Invasions 7:243–249

  10. Caley P, Groves RH, Barker R (2008) Estimating the invasion success of introduced plants. Diver Distrib 14:196–203

  11. Carlo TA, García D, Martínez D, Gleditsch JM, Morales JM (2013) Where do seeds go when they go far? Distance and directionality of avian seed dispersal in heterogeneous landscapes. Ecology 94(2):301–307

  12. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland MA

  13. Closset-Kopp D, Chabrerie O, Valentin B, Delachapelle H, Decocq G (2007) When Oskar meets Alice: does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For Ecol Manag 247:120–130

  14. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329

  15. Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species: causes and implications. In: Sandlund OT, Schei PJ, Viken A (eds) Invasive species and biodiversity management. Kluwer Academic Publishers, Netherlands, pp 103–125

  16. Daehler CC (2009) Short lag times for invasive tropical plants: evidence from experimental plantings in Hawaii. PLoS One 4:e4462

  17. Damascos M (2008) La rosa mosqueta y otras rosas. Universidad Nacional del Comahue, CRUB-UNComahue, San Carlos de Bariloche

  18. Deckers B, Verheyen K, Hermy M, Muys B (2005) Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium. Ecography 28:99–109

  19. Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue y Red Latinoamericana de Botánica San Carlos de Bariloche

  20. Fernández N (2007) Plantas exóticas invasoras de los Parques Nacionales de Patagonia. Accessed 16 July 2013

  21. Girona J, Gelly M, Mata M, Arbonés A, Rufat J, Marsal J (2005) Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric Water Manag 72:97–108

  22. Golubov J, Mandujano MC, Franco M, Montana C, Eguiarte LE, Lopez-Portillo J (1999) Demography of the invasive woody perennial Prosopis glandulosa (honey mesquite). J Ecol 87:955–962

  23. Hernández-Apolinar M, Valverde T, Purata S (2006) Demography of Bursera glabrifolia, a tropical tree used for folk woodcrafting in Southern Mexico: an evaluation of its management plan. For Ecol Manag 223:139–151

  24. Herrera CM (1987) Vertebrate-dispersed plants of the Iberian Peninsula: a study of fruit characteristics. Ecol Monogr 305–331

  25. Hood G (2005) Pop Tools version 2.7.1.

  26. Jongejans E, Shea K, Skarpaas O, Kelly D, Sheppard AW, Woodburn TL (2008) Dispersal and demography contributions to population spread of Carduus nutans in its native and invaded ranges. J Ecol 96:687–697

  27. Kimmins J (1997) Forest ecology, 2nd edn. Prentice Hall, Uper Saddle River

  28. Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315

  29. Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38

  30. Larkin DJ (2012) Lengths and correlates of lag phases in upper-Midwest plant invasions. Niol Invasions 14:827–838

  31. Lediuk K (2015) Ecofisiología y demografía de los árboles exóticos invasores Sorbus aucuparia y Crataegus monogyna. Comparación con las especies leñosas nativas de los bosques andino-patagónicos. Ph.D. Thesis. Universidad Nacional del Comahue, Argentina

  32. Lediuk KD, Damascos MA, Puntieri JG, Svriz M (2014) Differences in phenology and fruit characteristic between invasive and native woody species favor exotic species invasiveness. Plant Ecol 215:1455–1467

  33. Lockwood J, Hoopes M, Marchetti M (2007) Invasion ecology. Blackwell Publishing, Oxford

  34. Martin PH, Marks PL (2006) Intact forests provide only weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). J Ecol 94:1070–1079

  35. Martin PH, Canham CD, Marks PL (2008) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149

  36. Menges ES, Quintana-Ascencio PF, Weekley CW, Gaoue OG (2006) Population viability analysis and fire return intervals for an endemic Florida scrub mint. Biol Conserv 127:115–127

  37. Morales JM, García D, Martínez D, Rodriguez-Pérez J, Herrera JM (2013) Frugivore behavioural details matter for seed dispersal: a multi-species model for Cantabrian thrushes and trees. PLoS One 8:1–12

  38. Myking T, Solberg EJ, Austrheim G, Speed JDM, Bøhler F, Astrup R, Eriksen R (2013) Browsing of sallow (Salix caprea L.) and rowan (Sorbus aucuparia L.) in the context of life story strategies: a literature review. Eur J For Res 132:399–409

  39. Pauchard A, García R, Langdon B, Nuñez M (2014) Invasiones de plantas en ecosistemas forestales: bosques y praderas invadidas. In: Donoso C, Gonzalez M, Lara A (eds) Ecología Forestal: Bases para el Manejo Sustentable y Conservación de los Bosques Nativos de Chile. Ediciones Universidad Austral de Chile, Valdivia, pp 673–691

  40. Paulsen T, Högstedt G (2002) Passage through bird guts increases germination rate and seedling growth in Sorbus aucuparia. Funct Ecol 16:608–616

  41. Pereyra FX (2007) Geomorfología urbana de San Carlos de Bariloche y su influencia en los peligros naturales, Río Negro. Revista de la Asociación Geológica Argentina 62:309–320

  42. Phartyal SS, Godefroid S, Koedam N (2009) Seed development and germination ecophysiology of the invasive tree Prunus serotina (Rosaceae) in a temperate forest in Western Europe. Plant Ecol 204:285–294

  43. Quiroz C, Pauchard A, Marticorena A, Cavieres LA (2009) Manual de plantas invasoras del centro-sur de Chile. Laboratorio de Invasiones Biológicas, Concepción

  44. R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 2012. ISBN 3-900051-07-0

  45. Raspé O, Findlay C, Jacquemart A (2000) Sorbus aucuparia L. J Ecol 88:910–930

  46. Rice JM, Halpern CB, Antos JA, Jones JA (2012) Spatio-temporal patterns of tree establishment are indicate of biotic interactions during early invasion of a montane meadow. Plant Ecol 213:555–568

  47. Rovere AE, Molares S, Ladio AH (2013) Plantas utilizadas en cercos vivos de ciudades patagónicas: aportes de la etnobotánica para la conservación. Ecol Austral 23:165–173

  48. Satterthwaite WH, Menges ES, Quintana-Ascencio PF (2002) Assessing scrub buckwheat population viability in relation to fire using multiple modeling techniques. Ecol Appl 12(6):1672–1687

  49. Silvertown J, Charlesworth D (2009) Introduction to plant population biology. Wiley, Oxford

  50. Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268

  51. Suzán-Azpiri H, Sánchez-Rámos G, Martínez-Avalos JG, Villa-Melgarejo S, Franco M (2002) Population structure of Pinus nelsoni Shaw, an endemic pinyon pine in Tamaulipas, Mexico. For Ecol Manag 165:193–203

  52. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

  53. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Syst 39:237–257

  54. Wangen SR, Webster CR (2006) Potential for multiple lag phases during biotic invasion: reconstructing an invasion of the exotic tree Acer platanoides. J Appl Ecol 43(2):256–268

  55. Webb C, Sykes W, Garnock-Jones P (1988) Flora of New Zealand. Naturalised Pteridophytes, Gymnosperms, Dicotyledons, vol IV. Botany Division, D. S. I. R., Christchurch, p 1365

  56. Zalba SM, Amodeo MR (2015) Site-specific reproductive performance of an invasive fleshy-fruited tree in remnant grasslands of the Argentinean Pampas. Weed Res 55:546–554

  57. Żywiec M, Ledwoń M (2008) Spatial and temporal patterns of rowan (Sorbus aucuparia L.) regeneration in West Carpathian subalpine spruce forest. Plant Ecol 194:283–291

Download references


We thank D. Lediuk for helping with field work, L. Graham for her assistance in lab work and two anonymous reviewers whose comments and suggestion contributed to improve the manuscript. This work was funded by the Projects B135 and B164 Universidad Nacional del Comahue. Karen Lediuk acknowledges a Ph.D. fellowship of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas).

Author information

Correspondence to Karen D. Lediuk.

Additional information

Communicated by Joy Nystrom Mast.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 273 kb)

Supplementary material 2 (PDF 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lediuk, K.D., Damascos, M.A., Puntieri, J.G. et al. Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol 217, 899–911 (2016).

Download citation


  • Exotic tree
  • Fleshy fruit
  • Lag time
  • Matrix demographic analysis