Plant Ecology

, Volume 217, Issue 5, pp 549–563 | Cite as

Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary

  • Sára Márialigeti
  • Flóra Tinya
  • András Bidló
  • Péter Ódor


Herbaceous understory vegetation is an important part of temperate forested ecosystems, the diversity and composition of which are strongly dependent on the conditions of the forest stand and the landscape. The aim of this study was to find the most important environmental drivers influencing understory herb layer species composition (explored with multivariate analysis), and richness and cover (analysed by linear modelling) in managed mixed forests in West Hungary. Our detailed inventory showed that the most important factors increasing the diversity and cover of the understory are light, tree species richness, and landscape diversity. Composition is also mainly influenced by light conditions and tree species richness, with minor effects of tree species composition, soil texture, and moss cover. As the strongest influencing factors are closely linked to stand structure and tree species composition, they can either directly or indirectly be altered by forest management. In the studied region, heterogeneous light conditions and canopy structure, the maintenance of tree species richness and forest continuity are key elements for the conservation of forest herbs. Forestry that maintains continuous forest cover and the tree selection management system can better provide these conditions than the presently widely used shelterwood management system.


Understory Vascular plants Stand structure Microclimate Soil conditions Light 



Leaf area index


Diameter at breast height


Redundancy analysis


Principal component analysis


General linear modelling



We thank László Bodonczi, Zsuzsa Mag, István Mazál, Ákos Molnár, Péter Szűcs and Balázs Németh for their help in the field survey, and Anna Sáfár for careful language editing. The project was funded by the Hungarian Science Foundation (OTKA 79158), Őrség National Park Directorate and the TÁMOP-4.2.2.D-15/1/KONV-2015-0023 project of the European Union and European Social Found. Péter Ódor was supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11258_2016_599_MOESM1_ESM.pdf (291 kb)
Supplementary material 1 (PDF 291 kb)
11258_2016_599_MOESM2_ESM.pdf (186 kb)
Supplementary material 2 (PDF 185 kb)
11258_2016_599_MOESM3_ESM.pdf (272 kb)
Supplementary material 3 (PDF 271 kb)
11258_2016_599_MOESM4_ESM.pdf (315 kb)
Supplementary material 4 (PDF 315 kb)
11258_2016_599_MOESM5_ESM.pdf (324 kb)
Supplementary material 5 (PDF 323 kb)
11258_2016_599_MOESM6_ESM.pdf (291 kb)
Supplementary material 6 (PDF 290 kb)
11258_2016_599_MOESM7_ESM.pdf (294 kb)
Supplementary material 7 (PDF 294 kb)
11258_2016_599_MOESM8_ESM.pdf (209 kb)
Supplementary material 8 (PDF 208 kb)
11258_2016_599_MOESM9_ESM.pdf (212 kb)
Supplementary material 9 (PDF 211 kb)


  1. Allen CD, Savage M, Falk DA, Suckling KF, Swetnam TW, Schulke T, Stacey PB, Morgan P, Hoffman M, Klingel JT (2002) Ecological restoration of southwestern ponderosa pine ecosystems: a broad perspective. Ecol Appl 12:1418–1433. doi: 10.2307/3099981 CrossRefGoogle Scholar
  2. Arcanum (2006) Digitized maps of the Habsburg Empire. The Second Military Survey 1806–1869. DVD-Rom. Arcanum Kft., BudapestGoogle Scholar
  3. Arno T, De Keersmaeker L, Van Calster H, De Schrijver A, Vandekerkhove K, Verstraeten G, Verheyen K (2012) Diverging effects of two contrasting tree species on soil and herb layer development in a chronosequence of post-agricultural forest. For Ecol Manag 278:90–100. doi: 10.1016/j.foreco.2012.04.026 CrossRefGoogle Scholar
  4. Augusto L, Dupouey J-L, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831. doi: 10.1051/forest:2003077 CrossRefGoogle Scholar
  5. Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manag 254:1–15. doi: 10.1016/j.foreco.2007.09.038 CrossRefGoogle Scholar
  6. Bartels SF, Chen HYH (2013) Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J Veg Sci 24:543–552. doi: 10.1111/j.1654-1103.2012.01479.x CrossRefGoogle Scholar
  7. Bauhus J, Puettmann KJ, Kühne C (2013) Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, The Earthscan Forest Library, pp 187–213. ISBN 978-0-415-51977-9Google Scholar
  8. Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conserv 132:261–273. doi: 10.1016/j.biocon.2006.04.018 CrossRefGoogle Scholar
  9. Bellér P (1997) Talajvizsgalati modszerek [Methods of soil analysis.] Egyetemi jegyzet, Soproni Egyetem, Erdőmérnöki Kar. Termőhelyismerettani Tanszék, SopronGoogle Scholar
  10. Berges L, Avon C, Verheyen K, Dupouey JL (2013) Landownership is an unexplored determinant of forest understory plant composition in Northern France. For Ecol Manag 306:281–291. doi: 10.1016/j.foreco.2013.06.064 CrossRefGoogle Scholar
  11. Catorci A, Vitanzi A, Tardella FM, Hršak V (2012) Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests. Acta Oecol 43:29–41. doi: 10.1016/j.actao.2012.05.007 CrossRefGoogle Scholar
  12. Chávez V, Macdonald SE (2010) The influence of canopy patch mosaics on understory plant community composition in boreal mixedwood forest. For Ecol Manag 259:1067–1075. doi: 10.1016/j.foreco.2009.12.013 CrossRefGoogle Scholar
  13. Chávez V, Macdonald SE (2012) Partitioning vascular understory diversity in mixedwood boreal forests: the importance of mixed canopies for diversity conservation. For Ecol Manag 271:19–26. doi: 10.1016/j.foreco.2011.12.038 CrossRefGoogle Scholar
  14. Cook JE (2015) Structural effects on understory attributes in second-growth forests of northern Wisconsin, USA. For Ecol Manag 347:188–199. doi: 10.1016/j.foreco.2015.03.027 CrossRefGoogle Scholar
  15. Cools N, De Vos B (2010) Sampling and analysis of soil. Manual Part X. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests, Hamburg. ISBN: 978-3-926301-03-1. Accessed 2 Oct 2015
  16. De Keersmaeker L, Martens L, Verheyen K, Hermy M, De Schrijver A, Lust N (2004) Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen forest (Belgium). For Ecol Manag 188:291–304. doi: 10.1016/j.foreco.2003.07.025 CrossRefGoogle Scholar
  17. Dövényi Z (ed) (2010) Magyarország kistájainak katesztere [Cadastre of Hungarian regions]. MTA Földrajztudományi Intézet, BudapestGoogle Scholar
  18. Duguid MC, Ashton MS (2013) A meta-analysis of the effect of forest management for timber on understory plant species diversity in temperate forests. For Ecol Manag 303:81–90. doi: 10.1016/j.foreco.2013.04.009 CrossRefGoogle Scholar
  19. Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984. doi: 10.2307/3071833 CrossRefGoogle Scholar
  20. Durak T (2012) Changes in diversity of the mountain beech forest herb layer as a function of the forest management method. For Ecol Manag 276:154–164. doi: 10.1016/j.foreco.2012.03.027 CrossRefGoogle Scholar
  21. Faraway JJ (2005) Linear models with R. Chapman and Hall, LondonGoogle Scholar
  22. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x CrossRefGoogle Scholar
  23. George LO, Bazzaz FA (2014) The herbaceous layer as a filter determining spatial pattern in forest tree regeneration. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, New York, pp 340–355CrossRefGoogle Scholar
  24. Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858. doi: 10.1641/B571007 CrossRefGoogle Scholar
  25. Gilliam FS, Roberts MR (2014) Interactions between the herbaceous layer and overstory canopy of Eastern forests. A mechanism for linkage. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, New York, pp 233–254CrossRefGoogle Scholar
  26. Godefroid S, Rucquoij S, Koedam N (2005) To what extent do forest herbs recover after clearcutting in beech forests? For Ecol Manag 210:39–53. doi: 10.1016/j.foreco.2005.02.020 CrossRefGoogle Scholar
  27. Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, Guyon D, Trichet P, Delerue F, Niollet S, Andreasson F, Achat DL, Bakker MR (2013) Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. For Ecol Manag 289:38–47. doi: 10.1016/j.foreco.2012.10.026 CrossRefGoogle Scholar
  28. Groeneveld EVG, Massé A, Rochefort L (2007) Polytrichum strictum as a nurse-plant in peatland restoration. Restor Ecol 15:709–719. doi: 10.1111/j.1526-100X.2007.00283.x CrossRefGoogle Scholar
  29. Gyöngyössy P (2008) Gyantásország. Történeti adatok az őrségi erdők erdészeti és természetvédelmi értékeléséhez [Historical data to value forests in Őrség with a view to forest management and nature conservation]. Kerekerdő Alapítvány, SzombathelyGoogle Scholar
  30. Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For Ecol Manag 182:327–338. doi: 10.1016/S0378-1127(03)00091-4 CrossRefGoogle Scholar
  31. Hart SA, Chen HYH (2006) Understory vegetation dynamics of north American Boreal Forests. Crit Rev Plant Sci 25:381–397. doi: 10.1080/07352680600819286 CrossRefGoogle Scholar
  32. Hédl R, Kopecký M, Komárek J (2010) Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib 16:267–276. doi: 10.1111/j.1472-4642.2010.00637.x CrossRefGoogle Scholar
  33. Heinrichs S, Schmidt W (2009) Short-term effects of selection and clear cutting on the shrub and herb layer vegetation during the conversion of even-aged Norway spruce stands into mixed stands. For Ecol Manag 258:667–678. doi: 10.1016/j.foreco.2009.04.037 CrossRefGoogle Scholar
  34. Heithecker TD, Halpern CD (2006) Variation in microclimate associated with dispersed-retention harvests in coniferous forests of western Washington. For Ecol Manag 226:60–71. doi: 10.1016/j.foreco.2006.01.024 CrossRefGoogle Scholar
  35. Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361–371. doi: 10.1007/s11284-007-0354-3 CrossRefGoogle Scholar
  36. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22. doi: 10.1016/S0006-3207(99)00045-2 CrossRefGoogle Scholar
  37. Hutchinson TF, Boerner REJ, Iverson LR, Sutherland S, Kennedy Sutherland E (1999) Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecol 144:177–189CrossRefGoogle Scholar
  38. Ikauniece S, Brūmelis G, Kasparinskis R, Nikodemus O, Straupe I, Zariņš J (2013) Effect of soil and canopy factors on vegetation of Quercus robur woodland in the boreonemoral zone: a plant-trait based approach. For Ecol Manag 295:43–50. doi: 10.1016/j.foreco.2013.01.019 CrossRefGoogle Scholar
  39. Ito S, Nakayama R, Buckley GP (2004) Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern Kyushu, Japan. For Ecol Manag 196:213–225. doi: 10.1016/j.foreco.2004.02.050 CrossRefGoogle Scholar
  40. Kelemen K, Kriván A, Standovár T (2014) Effects of land-use history and current management on ancient woodland herbs in Western Hungary. J Veg Sci 25:172–183. doi: 10.1111/jvs.12046 CrossRefGoogle Scholar
  41. Kenderes K, Standovár T (2003) The impact of forest management on forest floor vegetation evaluated by species traits. Community Ecol 4(1):51–62. doi: 10.1556/ComEc.4.2003.1.8 CrossRefGoogle Scholar
  42. Király I, Nascimbene J, Tinya F, Ódor P (2013) Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv 22:209–223. doi: 10.1007/s10531-012-0415-y CrossRefGoogle Scholar
  43. Kopecký M, Hédl R, Szabó P (2013) Non-random extinctions dominate plant community changes in abandoned coppices. J Appl Ecol 50:79–87. doi: 10.1111/1365-2664.12010 CrossRefGoogle Scholar
  44. Kutszegi G, Siller I, Dima B, Takács K, Zs Merényi, Varga T, Turcsányi G, Bidló A, Ódor P (2015) Drivers of macrofungal species composition in temperate forests, West Hungary: functional groups compared. Fungal Ecol 17:69–83. doi: 10.1016/j.funeco.2015.05.009 CrossRefGoogle Scholar
  45. LI-COR Inc (1992a) LAI-2000 plant canopy analyzer instruction manual. LI-COR Inc., LincolnGoogle Scholar
  46. LI-COR Inc (1992b) 2000-90 Support software for the LAI-2000 plant canopy analyzer. LI-COR Inc., LincolnGoogle Scholar
  47. Lochhead KD, Comeau PG (2012) Relationships between forest structure, understorey light and regeneration in complex Douglas-fir dominated stands in south-eastern British Columbia. For Ecol Manag 284:12–22. doi: 10.1016/j.foreco.2012.07.029 CrossRefGoogle Scholar
  48. Macdonald SE, Fenniak TE (2007) Understory plant communities of boreal mixedwood forests in western Canada: natural patterns and response to variable-retention harvesting. For Ecol Manag 242:34–48. doi: 10.1016/j.foreco.2007.01.029 CrossRefGoogle Scholar
  49. Márialigeti S, Németh B, Tinya F, Ódor P (2009) The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodivers Conserv 18:2223–2241. doi: 10.1007/s10531-009-9586-6 CrossRefGoogle Scholar
  50. Matthews JD (1991) Silvicultural systems. Oxford University Press, OxfordGoogle Scholar
  51. Mikoláš M, Svoboda M, Pouska V, Morrissey RC, Donato DC, Keeton WS, Nagel TA, Popescu VD, Müller J, Bässler C, Knorn J, Rozylowicz L, Enescu CM, Trotsiuk V, Janda P, Mrhalová H, Michalová Z, Krumm F, Kraus D (2014) Comment on “Opinion paper: forest management and biodiversity”: the role of protected areas is greater than the sum of its number of species. Web Ecol 14:61–64. doi: 10.5194/we-14-61-2014 CrossRefGoogle Scholar
  52. Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For Ecol Manag 256:272–281. doi: 10.1016/j.foreco.2008.04.012 CrossRefGoogle Scholar
  53. Mölder A, Streit M, Schmidt W (2014) When beech strikes back: how strict nature conservation reduces herb-layer diversity and productivity in Central European deciduous forests. For Ecol Manag 319:51–61. doi: 10.1016/j.foreco.2014.01.049 CrossRefGoogle Scholar
  54. Muller RN (2014) Nutrient relation of the herbaceous layer in deciduous forest ecosystems. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, New York, pp 13–34Google Scholar
  55. Nascimbene J, Marini L, Ódor P (2012) Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecol Divers 5:355–363. doi: 10.1080/17550874.2012.735715 CrossRefGoogle Scholar
  56. Neufeld HS, Young DR (2014) Ecophysiology of the herbaceous layer in temperate deciduous forests. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, New York, pp 35–95CrossRefGoogle Scholar
  57. Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428CrossRefGoogle Scholar
  58. Ódor P, Király I, Tinya F, Bortignon F, Nascimbene J (2013) Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. For Ecol Manag 306:256–265. doi: 10.1016/j.foreco.2013.07.001 CrossRefGoogle Scholar
  59. Økland T, Rydgren K, Halvorsen Økland R, Storaunet KO, Rolstad J (2003) Variation in environmental conditions, understorey species number, abundance and composition among natural and managed Picea abies forest stands. For Ecol Manag 177:17–37. doi: 10.1016/S0378-1127(02)00331-6 CrossRefGoogle Scholar
  60. Paillet Y, Berges L, Hjalten J, Odor P, Avon C, Bernhardt-Romermann M, Bijlsma R-J, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Meszaros I, Sebastia M-T, Schmidt W, Standovar T, Tothmeresz B, Uotila A, Valladares F, Vellak K, Virtanen R (2010) Biodiversity differences between managed and unmanaged forests: metaanalysis of species richness in Europe. Conserv Biol 24:101–112. doi: 10.1111/j.1523-1739.2009.01399.x CrossRefPubMedGoogle Scholar
  61. Plue J, Van Gils B, De Schrijver A, Peppler-Lisbach C, Verheyen K, Hermy M (2013) Forest herb layer response to long-term light deficit along a forest developmental series. Acta Oecol 53:63–72. doi: 10.1016/j.actao.2013.09.005 CrossRefGoogle Scholar
  62. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, LeidenGoogle Scholar
  63. Priego-Santander AG, Campos M, Bocco G, Ramírez-Sánchez LG (2013) Relationship between landscape heterogeneity and plant species richness on the Mexican Pacific coast. Appl Geogr 40:171–178. doi: 10.1016/j.apgeog.2013.02.013 CrossRefGoogle Scholar
  64. R Development Core Team (2011) R. 2.14.0. A language and environment.
  65. Ren H, Ma G, Zhang Q, Guo Q, Wang J, Wang Z (2010) Moss is a key nurse plant for reintroduction of the endangered herb, Primulina tabacum Hance. Plant Ecol 209:313–320. doi: 10.1007/s11258-010-9754-5 CrossRefGoogle Scholar
  66. Roberts MR, Gilliam FS (2014) Response of the herbaceous layer to disturbance in eastern forests. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, New York, pp 321–339Google Scholar
  67. Rosenvald R, Lohmus A (2008) For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. For Ecol Manag 255:1–15. doi: 10.1016/j.foreco.2007.09.016 CrossRefGoogle Scholar
  68. Savill P (2004) Sylvicultural systems. In: Burley J, Evans J, Youngquist JA (eds) Enciclopedia of forest sciences. Elsevier, Amsterdam, pp 1003–1011CrossRefGoogle Scholar
  69. Schaich H, Plieninger T (2013) Land ownership drives stand structure and carbon storage of deciduous temperate forests. For Ecol Manag 305:146–157. doi: 10.1016/j.foreco.2013.05.013 CrossRefGoogle Scholar
  70. Schmidt M, Mölder A, Schönfelder E, Engel F, Schmiedel I, Culmsee H (2014) Determining ancient woodland indicator plants for practical use: a new approach developed in northwest Germany. For Ecol Manag 330:228–239. doi: 10.1016/j.foreco.2014.06.043 CrossRefGoogle Scholar
  71. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  72. Simon T (1992) A magyarországi edényes flóra határozója. Tankönyvkiadó, Budapest 892 pp Google Scholar
  73. Sopp L, Kolozs L (2000) Fatömegszámítási táblázatok. [Tables for calculating wood volume.] Állami Erdészeti Szolgálat, BudapestGoogle Scholar
  74. Stefanovits P (ed), Filep Gy, Füleky Gy (1999) Talajtan. [Soil science] Mezőgazda Kiadó, BudapestGoogle Scholar
  75. Strandberg B, Kristiansen SM, Tybirk K (2005) Dynamic oak-scrub to forest succession: effects of management on understorey vegetation, humus forms and soils. For Ecol Manag 211:318–328. doi: 10.1016/j.foreco.2005.02.051 CrossRefGoogle Scholar
  76. ter Braak CJF, Smilauer P (2002) Canoco 4.5. Biometris, Ceske BudejoviceGoogle Scholar
  77. Tímár G, Ódor P, Bodonczi L (2002) The characteristics of forest vegetation of the Őrség landscape protected area. Kanitzia 10:109–136Google Scholar
  78. Tinya F, Márialigeti S, Király I, Németh B, Ódor P (2009a) The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, Western Hungary. Plant Ecol 204:69–81. doi: 10.1007/s11258-008-9566-z CrossRefGoogle Scholar
  79. Tinya F, Mihók B, Márialigeti S, Mag Z, Ódor P (2009b) A comparison of three indirect methods for estimating understory light at different spatial scales in temperate mixed forests. Community Ecol 10(1):81–90. doi: 10.1556/ComEc.10.2009.1.10 CrossRefGoogle Scholar
  80. Tyler G (1989) Interacting effects of soil acidity and canopy cover on the species composition of field-layer vegetation in oak/hornbeam forests. For Ecol Manag 28:101–114. doi: 10.1016/0378-1127(89)90063-7 CrossRefGoogle Scholar
  81. Tutin TG et al (eds) (1964–1993) Flora Europaea. Cambridge University Press, CambridgeGoogle Scholar
  82. Van Calster H, Baeten L, De Schrijver A, De Keersmaeker L, Rogister JE, Verheyen K, Hermy M (2007) Management driven changes (1967–2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. For Ecol Manag 241:258–271. doi: 10.1016/j.foreco.2007.01.007 CrossRefGoogle Scholar
  83. Van Couwenberghe R, Collet C, Lacombe E, Gégout JC (2011) Abundance response of western European forest species along canopy openness and soil pH gradients. For Ecol Manag 262:1483–1490. doi: 10.1016/j.foreco.2011.06.049 CrossRefGoogle Scholar
  84. Verheyen K, Guntenspergen GR, Biesbrouck B, Hermy M (2003) An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale. J Ecol 91:731–742. doi: 10.1046/j.1365-2745.2003.00807.x CrossRefGoogle Scholar
  85. Vild O, Roleček J, Hédl R, Kopecký M, Utinek D (2013) Experimental restoration of coppice-with-standards: response of understorey vegetation from the conservation perspective. For Ecol Manag 310:234–241. doi: 10.1016/j.foreco.2013.07.056 CrossRefGoogle Scholar
  86. Vockenhuber EA, Scherber C, Langenbruch C, Meißner M, Seidel D, Tscharntke T (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111–119. doi: 10.1016/j.ppees.2011.02.004 CrossRefGoogle Scholar
  87. von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166–167:144–155. doi: 10.1016/j.agrformet.2012.07.018 CrossRefGoogle Scholar
  88. Wayman RB, North M (2007) Initial response of mixed-conifer understory plant community to burning and thinning restoration treatments. For Ecol Manag 239:32–44. doi: 10.1016/j.foreco.2006.11.011 CrossRefGoogle Scholar
  89. Wulf M (2003) Preference of plant species for woodlands with differing habitat continuities. Flora 198:444–460. doi: 10.1078/0367-2530-00118 CrossRefGoogle Scholar
  90. Zlatanov T, Schleppi P, Velichkov I, Hinkov G, Georgieva M, Eggertsson O, Zlatanova M, Vacik H (2013) Structural diversity of abandoned chestnut (Castanea sativa Mill.) dominated forests: implications for forest management. For Ecol Manag 291:326–335. doi: 10.1016/j.foreco.2012.11.015 CrossRefGoogle Scholar
  91. Zmihorski M, Chylarecki P, Rejt L, Mazgajski TD (2010) The effects of forest patch size and ownership structure on tree stand characteristics in a highly deforested landscape of central Poland. Eur J For Res 129:393–400. doi: 10.1007/s10342-009-0344-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sára Márialigeti
    • 1
  • Flóra Tinya
    • 2
  • András Bidló
    • 3
  • Péter Ódor
    • 2
  1. 1.Department of Plant Taxonomy, Ecology and Theoretical BiologyEötvös Loránd UniversityBudapestHungary
  2. 2.MTA Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
  3. 3.Department of Forest Site Diagnosis and ClassificationUniversity of West-HungarySopronHungary

Personalised recommendations