Advertisement

Plant Ecology

, Volume 217, Issue 4, pp 393–405 | Cite as

Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L.) seedlings?

  • Christoph DziedekEmail author
  • Goddert von Oheimb
  • Leonor Calvo
  • Andreas Fichtner
  • Wolf-Ulrich Kriebitzsch
  • Elena Marcos
  • Witja Till Pitz
  • Werner Härdtle
Article

Abstract

Climate change and atmospheric deposition of nitrogen affect biodiversity patterns and functions of forest ecosystems worldwide. Many studies have quantified tree growth responses to single global change drivers, but less is known about the interaction effects of these drivers at the plant and ecosystem level. In the present study, we conducted a full-factorial greenhouse experiment to analyse single and combined effects of nitrogen fertilization (N treatment) and drought (D treatment) on 16 morphological and chemical response variables (including tissue δ13C signatures) of one-year-old Fagus sylvatica seedlings originating from eight different seed families from the Cantabrian Mountains (NW Spain). Drought exerted the strongest effect on response variables, reflected by decreasing biomass production and increasing tissue δ13C signatures. However, D and N treatments interacted for some of the response variables, indicating that N fertilization has the potential to strengthen the negative effects of drought (with both antagonistic and amplifying interactions). For example, combined effects of N and D treatments caused a sevenfold increase of necrotic leaf biomass. We hypothesize that increasing drought sensitivity was mainly attributable to a significant reduction of the root biomass in combined N and D treatments, limiting the plants’ capability to satisfy their water demands. Significant seed family effects and interactions of seed family with N and D treatments across response variables suggest a high within-population genetic variability. In conclusion, our findings indicated a high drought sensitivity of Cantabrian beech populations, but also interaction effects of N and D on growth responses of beech seedlings.

Keywords

Cantabrian mountains Global change Interaction effects Spain Tissue δ13C signature 

Notes

Acknowledgments

This study was conducted in cooperation with the Johann Heinrich von Thünen-Institute (former Institute of World Forestry) in Hamburg. It was financially supported by the Friedrich Ebert Foundation (Bonn, Germany).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684CrossRefGoogle Scholar
  3. Anderson JM (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. Oecologia 12:251–274CrossRefGoogle Scholar
  4. Aranda I, Gil L, Pardos JA (2004) Improvement of growth conditions and gas exchange of Fagus sylvatica L. seedlings planted below a recently thinned Pinus sylvestris L. stand. Trees 18:211–220CrossRefGoogle Scholar
  5. Baudis M, Ellerbrock RH, Felsmann K, Gessler A, Gimbel K, Kayler Z, Puhlmann H, Ulrich A, Weiler M, Welk E, Bruelheide H (2014) Intraspecific differences in responses to rainshelter-induced drought and competition of Fagus sylvatica (L.) across Germany. Forest Ecol Manag 330:283–293CrossRefGoogle Scholar
  6. Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can J Forest Res 28:1007–1015CrossRefGoogle Scholar
  7. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59CrossRefPubMedGoogle Scholar
  8. Churkina G, Zaehle S, Hughes J, Viovy N, Chen Y, Jung M, Heumann BW, Ramankutty N, Heimann M, Jones C (2010) Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7:2749–2764CrossRefGoogle Scholar
  9. de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol Manag 258:1814–1823CrossRefGoogle Scholar
  10. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ulmer, StuttgartGoogle Scholar
  11. Friedrich U, von Oheimb G, Kriebitzsch WU, Schlesselmann K, Weber MS, Härdtle W (2012) Nitrogen deposition increases susceptibility to drought—experimental evidence with the perennial grass Molinia caerulea L, Moench. Plant Soil 353:59–71CrossRefGoogle Scholar
  12. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739CrossRefGoogle Scholar
  13. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  14. Garcia-Plazaola JI, Becerril JM (2000) Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees 14:485–490CrossRefGoogle Scholar
  15. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Renneberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11CrossRefGoogle Scholar
  16. Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Checko E, Forrester DI, Dawud SM, Finer L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci USA 111:14812–14815CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333CrossRefGoogle Scholar
  18. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefPubMedGoogle Scholar
  19. Härdtle W, Niemeyer T, Assmann T, Baiboks S, Fichtner A, Friedrich U, Lang AC, Neuwirth B, Pfister L, Ries C, Schuldt A, Simon N, von Oheimb G (2013) Long-term trends in tree-ring width and isotope signatures (δ13C, δ15N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems 16:1413–1428CrossRefGoogle Scholar
  20. Högberg P (2007) Nitrogen impacts on forest carbon. Nature 447:781–782CrossRefPubMedGoogle Scholar
  21. Högberg P, Johannisson C, Hallgren JE (1993) Studies of 13C in the foliage reveal interactions between nutrients and water in forest fertilization experiments. Plant Soil 152:207–214CrossRefGoogle Scholar
  22. IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, MAGoogle Scholar
  23. Jump AS, Hunt J, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biol 12:2163–2174CrossRefGoogle Scholar
  24. Karban R, Huntzinger M (2006) How to do ecology. Princeton University Press, PrincetonGoogle Scholar
  25. Kleinebecker T, Schmidt SR, Fritz C, Smolders CFA, Hölzel N (2009) Prediction of δ13C and δ15N in plant tissue with infrared reflectance spectroscopy. New Phytol 184:732–739CrossRefPubMedGoogle Scholar
  26. Kriebitzsch WU, Veste M (2012) Bedeutung trockener Sommer für die Photosynthese und Transpiration von verschiedenen Herkünften der Rot-Buche (Fagus sylvatica L.). Appl Agric Forestry Res 62:193–210Google Scholar
  27. Kuster TM, Arend M, Günthardt-Goerg MS, Schulin R (2013) Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil 369:61–71CrossRefGoogle Scholar
  28. Leuschner C (2002) Forest succession and water ressources: soil hydrology and ecosystem water turnover in early, mid and late stages of a 300-yr-long chronosequence on sandy soil. In: Dohrenbusch A, Bartsch N (eds) Forest development, succession, environmental stress and forest management. Springer, Berlin, pp 1–68Google Scholar
  29. Lindenmayer DB, Likens GE, Krebs CJ, Hobbs RJ (2010) Improved probability of detection of ecological “surprises”. Proc Natl Acad Sci USA 107:21957–21962CrossRefPubMedPubMedCentralGoogle Scholar
  30. Löf M, Bolte A, Torkel Welander N (2005) Interacting effects of irradiance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings. Scand J Forest Res 20:322–328CrossRefGoogle Scholar
  31. Luo Y, Chen HYH (2013) Observations from old forests underestimate climate change effects on tree mortality. Nat Commun 4:1655CrossRefPubMedPubMedCentralGoogle Scholar
  32. Magill H, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415CrossRefGoogle Scholar
  33. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850CrossRefPubMedGoogle Scholar
  34. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gomory D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221CrossRefPubMedGoogle Scholar
  35. Marcos E, Calvo L, Marcos JA, Taboada A, Tarrega R (2010) Tree effects on the chemical topsoil features of oak, beech and pine forests. Eur J Forest Res 129:25–30CrossRefGoogle Scholar
  36. Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biol 14:2081–2095CrossRefGoogle Scholar
  37. Meyer-Grünefeldt M, Friedrich U, Klotz M, von Oheimb G, Härdtle W (2015) Nitrogen deposition and drought events have non-additive effects on plant growth—evidence from greenhouse experiments. Plant Biosyst 149:424–432CrossRefGoogle Scholar
  38. Mölder I, Leuschner C, Leuschner HH (2011) δ13C signature of tree rings and radial increment of Fagus sylvatica as dependent on tree neighborhood and climate. Trees 25:215–229CrossRefGoogle Scholar
  39. Müller-Starck G, Baradat P, Bergmann F (1992) Genetic variation within European tree species. New Forest 6:23–47CrossRefGoogle Scholar
  40. Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139CrossRefGoogle Scholar
  41. Nilsen P (1995) Effect of nitrogen on drought strain and nutrient uptake in Norway spruce Picea abies (L.) Karst.) trees. Plant Soil 172:73–85CrossRefGoogle Scholar
  42. Noguchi K, Nagakura J, Kaneko S (2013) Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Front Plant Sci. doi: 10.3389/fpls.2013.00347 PubMedPubMedCentralGoogle Scholar
  43. Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200CrossRefGoogle Scholar
  44. Ochoa-Hueso R, Bell MD, Manrique E (2014) Impacts of increased nitrogen deposition and altered precipitation regimes on soil fertility and functioning in semiarid Mediterranean shrublands. J Arid Environ 104:106–115CrossRefGoogle Scholar
  45. Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biol 14:1076–1088CrossRefGoogle Scholar
  46. Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18:639–648CrossRefGoogle Scholar
  47. Pretzsch H (1999) Changes in forest growth. Forstwiss Cbl 118:228–250CrossRefGoogle Scholar
  48. Pretzsch H, Dursky J (2002) Growth reaction of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) to possible climatic changes in Germany: a sensitivity study. Forstwiss Cbl 121:145–154CrossRefGoogle Scholar
  49. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun. doi: 10.1038/ncomms5967 PubMedPubMedCentralGoogle Scholar
  50. Rennenberg H, Kreutzer K, Papen H, Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol 139:71–86CrossRefGoogle Scholar
  51. Rivas-Martinez S (1963) Estudio de la vegetacion y flora de las Sierras de Guadarrama y Gredos. Anales del Instituto Botanico A. Cavanilles 21:5–330Google Scholar
  52. Rose L, Leuschner C, Köckemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur J Forest Res 128:335–343CrossRefGoogle Scholar
  53. Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S, Coomes DA, Kandler G, Lehtonen A, Wirth C, Zavala MA (2014) Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes. Ecosystems 17:1439–1454CrossRefGoogle Scholar
  54. Runkle JR, Yetter TC (1987) Treefalls revisited: gap dynamics in the Southern Appalachians. Ecology 68:417–424CrossRefGoogle Scholar
  55. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  56. Sander T, König S, Rothe GM, Janßen A, Weisgerber H (2000) Genetic variation of European beech (Fagus sylvatica L.) along an altitudinal transect at mount Vogelsberg in Hesse, Germany. Mol Ecol 9:1349–1361CrossRefPubMedGoogle Scholar
  57. Scharnweber T, Manthey M, Criegee C, Bauwe A, Schroder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol Manag 262:947–961CrossRefGoogle Scholar
  58. Thomas FM (2000) Growth and water relations of four deciduous tree species (Fagus sylvatica L., Quercus petraea [Matt.] Liebl., Q. pubescens Willd., Sorbus aria [L.] Cr.) occurring at Central-European tree-line sites on shallow calcareous soils: physiological reactions of seedlings to severe drought. Flora 195:104–115Google Scholar
  59. Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathol 32:277–307CrossRefGoogle Scholar
  60. Vitousek PM, Mooney HA, Lubchenco J, Metillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  61. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol 6:207–215CrossRefGoogle Scholar
  62. Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269CrossRefPubMedGoogle Scholar
  63. Yang Y, Wang G, Yang L, Guo J (2013) Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in Eastern Tibetan Plateau. J Plant Growth Regul 32:298–306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christoph Dziedek
    • 1
    Email author
  • Goddert von Oheimb
    • 2
  • Leonor Calvo
    • 3
  • Andreas Fichtner
    • 1
  • Wolf-Ulrich Kriebitzsch
    • 4
  • Elena Marcos
    • 3
  • Witja Till Pitz
    • 1
  • Werner Härdtle
    • 1
  1. 1.Institute of EcologyLeuphana University of LüneburgLüneburgGermany
  2. 2.Institute of General Ecology and Environmental ProtectionTU DresdenTharandtGermany
  3. 3.Faculty of Biological and Environmental Sciences, EcologyUniversity of LeónLeónSpain
  4. 4.GeesthachtGermany

Personalised recommendations