Advertisement

Plant Ecology

, Volume 217, Issue 4, pp 359–368 | Cite as

Relative contribution of niche and neutral processes on tree species turnover across scales in seasonal forests of NW Argentina

  • Cecilia BlundoEmail author
  • Mario González-Espinosa
  • Lucio R. Malizia
Article

Abstract

Environmental heterogeneity and dispersal limitation influence tree species distribution, but their relative contributions change with the spatial scale of analysis. We analyzed tree species turnover using twenty 1-ha permanent plots to quantify variation in floristic similarity explained by environmental factors and geographical distance at regional (among plots) and local (within plots) scales in seasonal premontane forests of northwestern Argentina. We related floristic similarity (Bray–Curtis) with environmental variation and geographical distance using specific regression models (regression of distance matrix and mixed-effects models at regional and local scales, respectively). Floristic similarity decreased with distance at both spatial scales but its relative contribution was significant only at the regional scale (18 and <1 % at regional and local scale, respectively). Dispersal limitation may be a relevant process at biogeographical scale where dispersion at large distances become infrequent for some species. In addition, we identified that regional climatic and topographic gradients and local edaphic variation contribute to explain floristic similarity across scales in seasonal premontane forests. Environmental heterogeneity explained about the same variance in floristic similarity at regional and local scales (7 and 8 %, respectively). We conclude that quantitative aspects of floristic patterns, such as the relative contribution of niche and neutral processes to explain species distribution, can strengthen conservation strategies at different spatial scales, and therefore could be a useful tool in conservation planning.

Keywords

Climate Dispersal limitation Environmental heterogeneity Soil texture Topography 

Notes

Acknowledgments

We thank C. Aguirre, A. Piggot, D. Delgado, E. Cuyckens, C. Humano, and S. Lorenzatti for fieldwork in the permanent plots and soil sampling. K. Buzza, S. Pacheco, and L. Cristobal provided laboratory assistance. A. Malizia and R. Grau improved a preliminary manuscript version and we thank two anonymous reviewers. We acknowledge economic support from CONICET, Rufford Small Grant, ECOSUR, and Fundación ProYungas. We thank many private owners for allowing us to work on their properties.

Supplementary material

11258_2016_577_MOESM1_ESM.pdf (378 kb)
Supplementary material 1 (PDF 377 kb)

References

  1. Baldeck CA, Harms KE, Yavitt JB et al (2012) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B 280:201–225CrossRefGoogle Scholar
  2. Bianchi AR, Elena H, Volante S (2008) SIG climático del NOA. INTA, SaltaGoogle Scholar
  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  4. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  5. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. INBio, San José, pp 623–659Google Scholar
  6. Cabrera A, Willink A (1980) Biogeografía de América Latina, 2nd edn. OEA, Washington DCGoogle Scholar
  7. Chase JM (2005) Toward a really unified theory for metacommunities. Funct Ecol 19:182–186CrossRefGoogle Scholar
  8. Chave J, Muller-Landau HC, Levin SA (2002) Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 159:1–23CrossRefPubMedGoogle Scholar
  9. Clark D, Palmer M, Clark D (1999) Edaphic factors and the landscape-scale distribution of tropical rain forest trees. Ecology 80:2662–2675CrossRefGoogle Scholar
  10. Condit R, Pitman N, Leigh EG Jr et al (2002) Beta-diversity in tropical forest trees. Science 295:666–669CrossRefPubMedGoogle Scholar
  11. Gilbert B, Lechowicz MJ (2004) Neutrality, niche and dispersal in a temperate forest understory. PNAS 101:7651–7656CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grau H, Veblen T (2000) Rainfall variability, fire and vegetation dynamics in neotropical montane ecosystems in north-western Argentina. J Biogeogr 27:1107–1121CrossRefGoogle Scholar
  13. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, USGoogle Scholar
  14. John R, Dalling JW, Harms KE et al (2007) Soil nutrients influence spatial distributions of tropical tree species. PNAS 104:864–869CrossRefPubMedPubMedCentralGoogle Scholar
  15. Karst J, Gilbert B, Lechowicz MJ (2005) Ferns community assembly: the role of chance and the environmental at local and intermediate scales. Ecology 86:2473–2486CrossRefGoogle Scholar
  16. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974CrossRefPubMedGoogle Scholar
  17. Legendre P, Lapointe F, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499CrossRefGoogle Scholar
  18. Legendre P, Mi X, Ren H et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674CrossRefPubMedGoogle Scholar
  19. Legname P (1982) Árboles indígenas del noroeste argentino. Opera Lilloana 34:1–226Google Scholar
  20. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspective in community ecology. Ecology 87:1399–1410CrossRefPubMedGoogle Scholar
  21. Malizia LR, Pacheco S, Blundo C, Brown AD (2012) Caracterización altitudinal, uso y conservación de las yungas subtropicales de Argentina. Ecosistemas 21:53–73Google Scholar
  22. Minetti JL, González JA (2006) El cambio climático en Tucumán. Sus impactos. Conservación de la Naturaleza 17:1–23Google Scholar
  23. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  24. Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic Forest in southeastern Brazil and the influence of climate. Biotropica 32:793–810CrossRefGoogle Scholar
  25. Pacheco S, Malizia LR, Cayuela L (2010) Effects of climate change on subtropical forests of South America. Trop Conserv Sci 3(4):423–437Google Scholar
  26. Phillips OL, Núñez Vargas P, Chuspe Zans ME et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775CrossRefGoogle Scholar
  27. Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forest of South America. Ann Mo Bot Gard 80:902–927CrossRefGoogle Scholar
  28. Pyke C, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566CrossRefGoogle Scholar
  29. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171CrossRefPubMedGoogle Scholar
  31. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15CrossRefGoogle Scholar
  32. Silva JSB, Montoya AJD, López DC, Hurtado FHM (2011) Variación florística de especies arbóreas a escala local en un bosque de tierra firme en la Amazonia colombiana. Acta Amazonica 40:179–188CrossRefGoogle Scholar
  33. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611CrossRefGoogle Scholar
  34. Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033CrossRefGoogle Scholar
  35. ter Steege H, Zagt R (2002) Density and diversity. Nature 417:689–699Google Scholar
  36. Thiers O, Gerding V (2007) Variabilidad topográfica y edáfica en bosques de Nothofagus betuloides (Mirb) Blume, en el suroeste de Tierra del Fuego, Chile. Rev Chil Hist Nat 80:201–211CrossRefGoogle Scholar
  37. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environmental and floristic variation of western Amazonian forests. Science 299:241–244CrossRefPubMedGoogle Scholar
  38. Valencia R, Foster RB, Villa G et al (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229CrossRefGoogle Scholar
  39. Vázquez GA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure and diversity in the Sierra de Manantlán. J Ecol 86:999–1020CrossRefGoogle Scholar
  40. Vellend M, Srivastava DS, Anderson KM et al (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430CrossRefGoogle Scholar
  41. Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. J Ecol 88:464–478CrossRefGoogle Scholar
  42. Werneck FP, Costa GC, Coll GR et al (2011) Revisiting the historical distribution of seasonally dry tropical forest: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288CrossRefGoogle Scholar
  43. Williams-Linera G, Lorea F (2009) Tree species diversity driven by environmental and anthropogenic factors in tropical dry forest fragments of central Veracruz, Mexico. Biodivers Conserv 18:3269–3293CrossRefGoogle Scholar
  44. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506CrossRefGoogle Scholar
  45. Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14CrossRefGoogle Scholar
  46. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, USCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cecilia Blundo
    • 1
    Email author
  • Mario González-Espinosa
    • 2
  • Lucio R. Malizia
    • 3
  1. 1.CONICET, Instituto de Ecología Regional (IER)Universidad Nacional de TucumánTucumánArgentina
  2. 2.Departamento de Conservación de la BiodiversidadEl Colegio de la Frontera Sur (ECOSUR)ChiapasMexico
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de JujuyJujuyArgentina

Personalised recommendations