Advertisement

Plant Ecology

, Volume 216, Issue 9, pp 1231–1242 | Cite as

Topographically determined water availability shapes functional patterns of plant communities within and across habitat types

  • Andrea Oddershede
  • Jens-Christian Svenning
  • Christian Damgaard
Article

Abstract

Plant-environment relationships can be assessed through functional traits, but we have little understanding of how they vary on larger scales due to limited sampling. Using a fine-grained digital elevation model and vegetation survey data from a national monitoring program, we now have the chance to investigate the importance of topographically determined water availability in shaping the functional structure of vegetation of different habitat types across Denmark. Plant community responses to hydrology were detected through community-weighted Ellenberg F values and six community-weighted functional traits. We used mixed-effect models to account for the variability related to unknown site-specific factors such as management regime and regional species pool. Additionally, we evaluated whether we can trust a remote-sensing-based topographically determined water availability index (TWI) that calculates how water accumulates on the surface of the landscape to represent actual hydrology. Remote-sensing-based topographically determined water availability represented actual local water availability as indicated by a positive correlation with community-weighted Ellenberg F values (P < 0.001), showing that this is an effective method of measuring water availability at large scale. The strength and direction of vegetation-TWI relationships differed between habitat types. Functional responses were also habitat dependent and to a certain degree explained by non-considered site-specific factors which presumably include historical land use and current management. This study contributes to the understanding of plant–water relationships which is highly relevant, as the hydrological regime might change rapidly in the near future with potential prevalence of extremes in the hydrological environment.

Keywords

Trait-environment relationship Hydrology Community assembly Population dynamics Remote sensing 

Notes

Acknowledgments

AO was financed by an Aarhus University, Science and Technology PhD fellowship. JCS considers his contribution a part of the Center for Informatics Research on Complexity in Ecology, CIRCE, funded by the Aarhus University and Aarhus University Research Foundation under the AU IDEAS program.

Supplementary material

11258_2015_504_MOESM1_ESM.eps (80.7 mb)
Supplementary material 1 (EPS 82683 kb)

References

  1. Araya YN, Gowing DJ, Dise N (2010) A controlled water-table depth system to study the influence of fine-scale differences in water regime for plant growth. Aquatic Bot 92:70–74CrossRefGoogle Scholar
  2. Araya YN, Silvertown J, Gowing DJ, McConway KJ, Peter Linder H, Midgley G (2011) A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytol 189:253–258CrossRefPubMedGoogle Scholar
  3. Bartelheimer M, Gowing D, Silvertown J (2010) Explaining hydrological niches: the decisive role of below-ground competition in two closely related Senecio species. J Ecol 98:126–136. doi: 10.1111/j.1365-2745.2009.01598.x CrossRefGoogle Scholar
  4. Blom C, Voesenek L (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295CrossRefPubMedGoogle Scholar
  5. Brunbjerg AK, Ejrnæs R, Svenning JC (2012) Species sorting dominates plant metacommunity structure in coastal dunes. Acta Oecol 39:33–42CrossRefGoogle Scholar
  6. Bruun HH, Fritzbøger B, Rindel PO, Hansen UL (2001) Plant species richness in grasslands: the relative importance of contemporary environment and land-use history since the Iron Age. Ecography 24:569–578CrossRefGoogle Scholar
  7. Cornelissen JHC, Diez PC, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765. doi: 10.2307/2261337 CrossRefGoogle Scholar
  8. Cornelissen J et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide Australian. J Bot 51:335–380Google Scholar
  9. Damgaard C (2012) Trend analyses of hierarchical pin-point cover data. Ecology 93:1269–1274CrossRefPubMedGoogle Scholar
  10. Damgaard C, Nygaard B, Nielsen KE (2008) Danske kystklitter-vegetation og jordbundskemi: Analyse af NOVANA-data 2004–2006. Danmarks Miljøundersøgelser, Aarhus UniversitetGoogle Scholar
  11. Danner A, Mølhave T, Yi K, Agarwal PK, Arge L, Mitasova H TerraStream (2007) From elevation data to watershed hierarchies. ACM, p 28Google Scholar
  12. Douma JC, Bardin V, Bartholomeus RP, van Bodegom PM (2012) Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Funct Ecol 26:1355–1365. doi: 10.1111/j.1365-2435.2012.02054.x CrossRefGoogle Scholar
  13. Doxford SW, Freckleton RP (2011) Changes in the large-scale distribution of plants: extinction, colonisation and the effects of climate. J Ecol 100:519–529CrossRefGoogle Scholar
  14. Ejrnæs R, Bruun HH, Aude E, Buchwald E (2004) Developing a classifier for the habitats directive grassland types in Denmark using species lists for prediction. Appl Veg Sci 7:71–80. doi: 10.1111/j.1654-109X.2004.tb00597.x CrossRefGoogle Scholar
  15. Ejrnæs R, Nygaard B, Fredshavn JR (2009) Overdrev, enge og moser. Håndbog i naturtypernes karakteristik og udvikling samt forvaltningen af deres biodiversitet. Danmarks Miljøundersøgelser, Aarhus UniversitetGoogle Scholar
  16. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von pflanzen in MitteleuropaGoogle Scholar
  17. Eriksson O, Cousins SAO, Bruun HH (2009) Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J Veg Sci 13:743–748CrossRefGoogle Scholar
  18. Fredshavn J, Nielsen, K.E., Ejrnæs, R., Nygaard, B., Skov, F., Strandberg, B., Johannsen, V.K. (2009) Tekniske anvisninger til overvågning af terrestriske naturtyper. http://www.dmudk/fileadmin/Attachments/TAN1_106_01_FDCNY1pdf
  19. Fredshavn JR, Nygaard B, Ejrnæs R (2010) Naturtilstand på terrestriske naturarealer–besigtigelser af § 3-arealer: 2. udgave. Danmarks Miljøundersøgelser, Aarhus UniversitetGoogle Scholar
  20. Garnier É, Navas M-L (2013) Diversité fonctionnelle des plantes: traits des organismes, structure des communautés, propriétés des écosystèmes. De BoeckGoogle Scholar
  21. Grafen A, Hails R (2002) Modern statistics for the life sciences, vol 123. Oxford University Press, OxfordGoogle Scholar
  22. Hájek M, Hájková P, Kočí M, Jiroušek M, Mikulášková E, Kintrová K (2013) Do we need soil moisture measurements in the vegetation–environment studies in wetlands? J Veg Sci 24:127–137. doi: 10.1111/j.1654-1103.2012.01440.x CrossRefGoogle Scholar
  23. Hengl T, Reuter HI (2008) Geomorphometry: concepts, software, applications. Elsevier Science, AmsterdamGoogle Scholar
  24. Jiménez-Alfaro B, Marcenó C, Bueno Á, Gavilán R, Obeso JR (2014) Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. J Veg Sci 25:160–171. doi: 10.1111/jvs.12060 CrossRefGoogle Scholar
  25. Knevel I, Bekker R, Bakker J, Kleyer M (2009) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14:611–614CrossRefGoogle Scholar
  26. Kotowski W, Van Diggelen R, Kleinke J (1998) Behaviour of wetland plant species along a moisture gradient in two geographically distant areas. Acta Bot Neerl 47:337–349Google Scholar
  27. Marshall KN, Cooper DJ, Hobbs NT (2014) Interactions among herbivory, climate, topography and plant age shape riparian willow dynamics in northern Yellowstone National Park, USA. J Ecol 102:667–677. doi: 10.1111/1365-2745.12225 CrossRefGoogle Scholar
  28. Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Ejrnæs R, Odgaard MV, Svenning J-C (2013a) Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserv 22:2151–2166CrossRefGoogle Scholar
  29. Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Odgaard MV, Nygaard B, Svenning J-C (2013b) Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere 4:art91Google Scholar
  30. Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC (2013c) Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic J Bot 31:129–144CrossRefGoogle Scholar
  31. Mommer L, Lenssen JP, Huber H, Visser EJ, De Kroon H (2006) Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J Ecol 94:1117–1129CrossRefGoogle Scholar
  32. Nakagawa S, Schielzeth H (2012) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecol Evol 4(2):133–142CrossRefGoogle Scholar
  33. National survey and cadastre (2008) Proceedings of the 2nd NKG workshop on national DEMs, Copenhagen, November, 11–13 2008, Technical Report No. 04Google Scholar
  34. Nielsen KE, Damgaard C, Nygaard B, Bladt JS, Ejrnæs R, Bruus M (2012) Terrestriske Naturtyper 2011-udvikling og areal. Aarhus Universitet, DCE-Nationalt Center for Miljø og EnergiGoogle Scholar
  35. Pinheiro J, Bates D, DebRoy S, Sarkar D (2009) the R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96 R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Poff NL (2002) Ecological response to and management of increased flooding caused by climate change. Philos Trans R Soc Lond Ser A 360:1497–1510CrossRefGoogle Scholar
  37. Prévosto B et al (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobota 46:303–325. doi: 10.1007/s12224-010-9096-z CrossRefGoogle Scholar
  38. R Core Team (2013) R: a language and environment for statistical computingGoogle Scholar
  39. Romão C (1996) Interpretation manual of European Union habitatsGoogle Scholar
  40. Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63CrossRefGoogle Scholar
  41. Ter Braak CF, Gremmen NM (1987) Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Vegetatio 69:79–87. doi: 10.1007/BF00038689 CrossRefGoogle Scholar
  42. Timmermann A, Damgaard C, Strandberg MT, Svenning J-C (2014) Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J Appl Ecol 52(1):21–30. doi: 10.1111/1365-2664.12374 CrossRefGoogle Scholar
  43. Vandewalle M et al (2014) Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. J Veg Sci 25:750–759. doi: 10.1111/jvs.12126 CrossRefGoogle Scholar
  44. Violle C et al (2011) Plant functional traits capture species richness variations along a flooding gradient. Oikos 120:389–398. doi: 10.1111/j.1600-0706.2010.18525.x CrossRefGoogle Scholar
  45. Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73. doi: 10.1111/nph.13209 CrossRefPubMedGoogle Scholar
  46. Weiher E, Keddy PA (1999) Relative abundance and evenness patterns along diversity and biomass gradients. Oikos 87:355–361CrossRefGoogle Scholar
  47. Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefPubMedGoogle Scholar
  48. Wright IJ et al (2005) Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14:411–421CrossRefGoogle Scholar
  49. Zobel M (1992) Plant species coexistence: the role of historical, evolutionary and ecological factors. Oikos 65:314–320CrossRefGoogle Scholar
  50. Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269CrossRefPubMedGoogle Scholar
  51. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andrea Oddershede
    • 1
    • 2
  • Jens-Christian Svenning
    • 2
  • Christian Damgaard
    • 1
  1. 1.Section for Plant and Insect Ecology, Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Section for Ecoinformatics & Biodiversity, Department of BioscienceAarhus UniversityAarhus CDenmark

Personalised recommendations