Plant Ecology

, Volume 215, Issue 12, pp 1469–1481 | Cite as

Composition and structure of a diverse tree community at the edges of a Brazilian Amazon rainforest island surrounded by marshes and mangroves

  • Luciana Oliveira dos Santos
  • Leiliane Oliveira dos Santos
  • Moirah Paula Machado de Menezes
  • Colin Robert Beasley
  • Ulf Mehlig
Article
  • 331 Downloads

Abstract

Man-made forest edges affect tree community composition and structure, but there is little information on the effects of natural edges. To detect tree community changes related to natural edges, we investigated a terrestrial forest island, bordered by grassland and mangrove landscapes, on the Brazilian Amazon coast. Forest structure and tree species composition were examined in 10-m-wide and 100-m-long plots from the forest edge to the interior in relation to both landscapes (8 grassland and 4 mangrove plots). Elevation and soil quality did not reveal strong spatial variability; tidal inundation established a boundary for forest expansion without influencing the forest interior. The tree community consisted of 82 species. No distinct changes in vegetation structure and composition with distance from the border were detected. Ordination procedures gave weak indications for shifts in community composition with distance from the edge and in respect to edge type. Single species occurred more frequently either close to or more distant from the grassland-forest interface. No such tendencies were detected at the mangrove-terrestrial forest interface, probably because the lack of structural differences between terrestrial forest and mangrove canopies did not permit the establishment of edge-related microclimatic gradients. Due to the isolation of the forest island and the harsh coastal environment, the tree community was dominated by generalist species which are well adapted to the conditions at the grassland–forest edge. Furthermore, the patchy distribution of frequent species and the high number of rare species made it difficult to detect spatial patterns related to the forest edge.

Keywords

Edge effect Core area Spatial smoothing Split-window analysis Pará Bragança 

Supplementary material

11258_2014_407_MOESM1_ESM.pdf (524 kb)
Supplementary material 1 (pdf 523 KB)
11258_2014_407_MOESM2_ESM.pdf (110 kb)
Supplementary material 2 (pdf 109 KB)
11258_2014_407_MOESM3_ESM.pdf (145 kb)
Supplementary material 3 (pdf 144 KB)

References

  1. Abreu MO, Mehlig U, Nascimento RESA, Menezes MPM (2006) Análise de composição florística e estrutura de um fragmento de bosque de terra firme e de um manguezal vizinhos na península de Ajuruteua, Bragança, Pará. Bol do Mus Para Emílio Goeldi Sér Ciênc Nat 2(3):27–34Google Scholar
  2. Alvino FdO, Silva MFF, Rayol BP (2005) Potencial de uso das espécies arbóreas de uma floresta secundária, na Zona Bragantina, Pará, Brasil. Acta Amazon 35(4):413–420CrossRefGoogle Scholar
  3. Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210CrossRefGoogle Scholar
  4. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121Google Scholar
  5. Araújo MM, Tucker JM, Vasconcelos SS, Zarin DJ, Oliveira W, Sampaio PD, Rangel-Vasconcelos LG, Aragão DV, Miranda I (2005) Padrão e processo sucessionais em florestas secundárias de diferentes idades na Amazônia oriental. Ciênc Florest 15(4):343–357Google Scholar
  6. Armas C, Pugnaire FI (2009) Ontogenetic shifts in interactions of two dominant shrub species in a semi-arid coastal sand dune system. J Veg Sci 20:535–546CrossRefGoogle Scholar
  7. Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42, URL www.jstatsoft.org, ISSN 1548–7660. Accessed 2 Sept 2014
  8. Baddeley A, Turner R (2006) Modelling spatial point patterns in R. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point pattern modelling, lecture notes in statistics, vol 185. Springer, New York, pp 23–74CrossRefGoogle Scholar
  9. Baddeley A, Chang YM, Song Y, Turner R (2012) Nonparametric estimation of the dependence of a spatial point process on spatial covariates. Stat Interface 5(2):221–236CrossRefGoogle Scholar
  10. Behling H, Cohen MCL, Lara RJ (2001) Studies on Holocene mangrove ecosystem development and dynamics of the Bragança peninsula in northeastern Pará, Brazil. Paleogeogr Palaeoclimatol Palaeoecol 167:225–242CrossRefGoogle Scholar
  11. Camargo JLC, Kapos V (1995) Complex edge effects on soil moisture and microclimate in central Amazonian forest. J Trop Ecol 11:205–221CrossRefGoogle Scholar
  12. Cohen MCL, Souza Filho PWM (2005) A model of Holocene mangrove development and relative sea-level changes on the Braganca Peninsula (northern Brazil). Wetl Ecol Manag 13:433–443. doi:10.1007/s11273-004-0413-2 CrossRefGoogle Scholar
  13. Cornelius JM, Reynolds JF (1991) On determining the statistical significance of discontinuities within ordered ecological data. Ecology 72(6):2057–2070CrossRefGoogle Scholar
  14. Cramer VA, Schmidt S, Stewart GR, Thorburn PJ (2002) Can the nitrogenous composition of xylem sap be used to assess salinity stress in Casuarina glauca? Tree Physiol 22:1019–1026PubMedCrossRefGoogle Scholar
  15. Denyer K, Burns B, Ogden J (2006) Buffering of native forest edge microclimate by adjoining tree plantations. Austral Ecol 31:478–489. doi:10.1111/j.1442-9993.2006.01609.x CrossRefGoogle Scholar
  16. Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31(1):17–30Google Scholar
  17. Dodonov P, Harper KA, Silva-Matos DM (2013) The role of edge contrast and forest structure in edge influence: vegetation and microclimate at edges in the Brazilian cerrado. Plant Ecol 214(11):1345–1359. doi:10.1007/s11258-013-0256-0 CrossRefGoogle Scholar
  18. Erdős L, Gallé R, Körmöczi L, Bátori Z (2013) Species composition and diversity of natural forest edges: edge responses and local edge species. Community Ecol 14(1):48–58. doi:10.1556/ComEc.14.2013.1.6 CrossRefGoogle Scholar
  19. Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLOS one 8(3):1–7. doi:10.1371/journal.pone.0058093 CrossRefGoogle Scholar
  20. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(1):117–142. doi:10.1017/S1464793105006949 PubMedCrossRefGoogle Scholar
  21. Ferreira LV, Laurance WF (1997) Effects of forest fragmentation on mortality and damage of selected trees in central Amazonia. Conserv Biol 11(3):797–801. doi:10.1046/j.1523-1739.1997.96167.x CrossRefGoogle Scholar
  22. Geßler A, Duarte HM, Franco AC, Lüttge U, Mattos EA, Nahm M, Scarano FR, Zaluar HLT, Rennenberg H (2005) Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE-Brazil II. Spatial and ontogenetic dynamics in Andira legalis, a deciduous legume tree. Trees 19:510–522CrossRefGoogle Scholar
  23. Harper KA, Macdonald SE (2001) Structure and composition of riparian boreal forest: new methods for analyzing edge influence. Ecology 82(3):649–659CrossRefGoogle Scholar
  24. Harper KA, Macdonald SE, Burton PJ, Chen J, Euskirchen ES, Brosofske KD, Saunders SC, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782CrossRefGoogle Scholar
  25. Hennenberg KJ, Goetze D, Kouamé L, Orthmann B, Porembski S (2005a) Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. J Veg Sci 16(3):301–310. doi:10.1111/j.1654-1103.2005.tb02368.x CrossRefGoogle Scholar
  26. Hennenberg KJ, Goetze D, Minden V, Traoré D, Porembski S (2005b) Size-class distribution of Anogeissus leiocarpus (Combretaceae) along forest-savanna ecotones in northern Ivory Coast. J Trop Ecol 21(3):273–281CrossRefGoogle Scholar
  27. Hennenberg KJ, Goetze D, Szarzynski J, Orthmann B, Reineking B, Steinke I, Porembski S (2008) Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic Appl Ecol 9:275–285. doi:10.1016/j.baae.2007.02.004 CrossRefGoogle Scholar
  28. INMET (1992) Normais Climatológicas (1961–1990). Instituto Nacional de Meteorologia (INMET), Brasilia, DFGoogle Scholar
  29. INMET (2014) Banco de dados meteorológicos para ensino e pesquisa (BDMEP), rede INMET. URL http://www.inmet.gov.br/projetos/rede/pesquisa. Accessed 2 Sept 2014
  30. Kämpf N, Woods WI, Sombroek W, Kern DC, Cunha TJF (2003) Classification of Amazonian dark earths and other ancient anthropic soils. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer, Dodrecht, pp 77–102 chap 5Google Scholar
  31. Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5(2):173–185CrossRefGoogle Scholar
  32. Lara RJ, Cohen MCL, Szlafsztein C (2010) Drivers of temporal changes in mangrove vegetation boundaries and consequences for land use. In: Saint-Paul U, Schneider H (eds) Mangrove dynamics and management in north Brazil, Ecological Studies, vol 211. Springer, New York, pp 127–141 chap 8CrossRefGoogle Scholar
  33. Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744. doi:10.1016/j.biocon.2008.05.011 CrossRefGoogle Scholar
  34. Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33:399–408. doi:10.1111/j.1442-9993.2008.01895.x CrossRefGoogle Scholar
  35. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55(1):77–92, doi:10.1016/0006-3207(91)90006-U, URL http://www.sciencedirect.com/science/article/pii/000632079190006U. Accessed 2 Sept 2014
  36. Laurance WF, Ferreira LV, Rankin-de-Mérona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040CrossRefGoogle Scholar
  37. Laurance WF, Delamônica P, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836. doi:10.1038/35009032 PubMedCrossRefGoogle Scholar
  38. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16(3):605–618. doi:10.1046/j.1523-1739.2002.01025.x CrossRefGoogle Scholar
  39. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS, Giraldo JP, Lovejoy TE, Condi R, Chave J, Harms KE, D’Angelo S (2006a) Rapid decay of tree-community composition in Amazonian forest fragments. PNAS: Proc Natl Acad Sci U S A 103(50):19010–19014. doi:10.1073/pnas.0609048103
  40. Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Ribeiro EL, Apretz RLC (2006b) Rain forest fragmentation and the proliferation of successional trees. Ecology 87(2):469–482PubMedCrossRefGoogle Scholar
  41. Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67. doi:10.1016/j.biocon.2010.09.021 CrossRefGoogle Scholar
  42. Lloyd KM, McQueen AA, Lee BJ, Wilson RC, Walker S, Wilson JB (2000) Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J Veg Sci 11:903–910CrossRefGoogle Scholar
  43. Malcom JR (1994) Edge effects in central Amazonian forest fragments. Ecology 75(8):2438–2445CrossRefGoogle Scholar
  44. Matallana G, Wendt T, Araujo DSD, Scarano FR (2005) High abundance of dioecious plants in a tropical coastal vegetation. Am J Bot 92(9):1513–1519. doi:10.3732/ajb.92.9.1513 PubMedCrossRefGoogle Scholar
  45. Mehlig U, Menezes MPM, Reise A, Schories D, Medina E (2010) Mangrove vegetation of the Caeté estuary. In: Saint-Paul U, Schneider H (eds) Mangrove dynamics and management in north Brazil, Ecological Studies, vol 211. Springer, New York, pp 71–107 chap 6CrossRefGoogle Scholar
  46. Mesquita RCG, Delamônica P, Laurance WF (1999) Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. Biol Conserv 91:129–134CrossRefGoogle Scholar
  47. Müller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. The Blackburn Press, CaldwellGoogle Scholar
  48. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62. doi:10.1016/S0169-5347(00)88977-6 PubMedCrossRefGoogle Scholar
  49. Nascimento HEM, Andrade ACS, Camargo JLC, Laurance WF, Laurance SG, Ribeiro JEL (2006) Effects of the surrounding matrix on tree recruitment in Amazonian forest fragments. Conserv Biol 20(3):853–860. doi:10.1111/j.1523-1739.2006.00344.x PubMedCrossRefGoogle Scholar
  50. Nishijima H, Iyobe T, Nishio F, Tomizawa H, Nakata M, Haraguchi A (2003) Site selectivity of Picea glehnii forest on Syunkunitai sand spit, north eastern Japan. Wetlands 23(2):406–415CrossRefGoogle Scholar
  51. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. URL http://CRAN.R-project.org/package=vegan, R package version 2.0-10. Accessed 2 Sept 2014
  52. Pires JM, Dobzhansky T, Black GA (1953) An estimate of the number of species of trees in an Amazonian forest community. Bot Gaz 114(4):467–477CrossRefGoogle Scholar
  53. Prata SS, Miranda IdS, Alves SAO, Farias FC, Jardim FCdS (2010) Floristic gradient of the northeast Paraense secondary forests. Acta Amazon 40(3):523–534CrossRefGoogle Scholar
  54. Ramos FN, Zucchi MI, Solferini VN, Santos FAM (2008) Mating systems of Psychotria tenuinervis (Rubiaceae): distance from anthropogenic and natural edges of Atlantic forest fragment. Biochem Genet 46:88–100. doi:10.1007/s10528-007-9132-8 PubMedCrossRefGoogle Scholar
  55. Ramos FN, Lima PFd, Zucchi MI, Colombo CA, Solferini VN (2010) Genetic structure of tree and shrubby species among anthropogenic edges, natural edges, and interior of an Atlantic forest fragment. Biochem Genet 48:215–228. doi:10.1007/s10528-009-9311-x PubMedCrossRefGoogle Scholar
  56. R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/, ISBN 3-900051-07-0. Accessed 2 Sept 2014
  57. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/. Accessed 2 Sept 2014
  58. Salinas LM, DeLaune RD, Patrick JWH (1986) Changes occurring along a rapidly submerging coastal area: Louisiana, USA. J Coast Res 2(3):269–284Google Scholar
  59. Santos GGA, Santos BA, Nascimento HEM, Marcelo T (2012) Contrasting demographic structure of short- and long-lived pioneer tree species on Amazonian forest edges. Biotropica 44(6):771–778. doi:10.1111/j.1744-7429.2012.00882.x CrossRefGoogle Scholar
  60. Shirley LJ, Battaglia LL (2006) Assessing vegetation change in coastal landscapes of the northern Gulf of Mexico. Wetlands 26(4):1057–1070CrossRefGoogle Scholar
  61. Silva RM, Mehlig U, Santos JUM, Menezes MPM (2010) The coastal restinga vegetation of Pará, Brazilian Amazon: a synthesis. Rev Bras de Botân 33(4):563–573CrossRefGoogle Scholar
  62. Silveira MI, Oliveira ER, Kern DC, Costa ML, Rodrigues SFS (2011) O sítio Jabuti, em Bragança, Pará, no cenário arqueológico do litoral amazônico (site Jabuti, in Bragança, State of Pará, in the archaeological scenario of the Amazonian coastal landscape). Bol do Mus Para Emílio Goeldi, sér Ciênc Humanas 6(2):335–345CrossRefGoogle Scholar
  63. Souza-Filho PWM, Lessa GC, Cohen MCL, Costa FR, Lara RJ (2009) The subsiding macrotidal barrier estuarine system of the eastern Amazon coast, northern Brazil. In: Dillenburg SF, Hesp PA (eds) Geology of Brazilian Coastal barriers, Lecture notes in earth sciences, vol 107. Springer, New York, pp 347–375. doi:10.1007/978-3-540-44771-9-11 chap 11Google Scholar
  64. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, LondonGoogle Scholar
  65. Stevens PF (2001 onwards) Angiosperm phylogeny website. Web site, URL http://www.mobot.org/MOBOT/research/APweb/
  66. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179CrossRefGoogle Scholar
  67. ter Steege H, Sabatier D, Castellanos H, van Andel T, Duivenvoorden J, Oliveira AA, Ek R, Lilwah R, Maas P, Mori S (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Trop Ecol 16(6):801–828CrossRefGoogle Scholar
  68. Thiers B (continuously updated) Index herbariorum: a global directory of public herbaria and associated staff. Web site, URL http://sweetgum.nybg.org/ih/
  69. Thompson J, Proctor J, Scott DA, Fraser PJ, Marrs RH, Miller RP, Viana V (1998) Rain forest on Maracá Island, Roraima, Brazil: artificial gaps and plant response to them. For Ecol Manag 102:305–321CrossRefGoogle Scholar
  70. Wessel P, Smith WHF (1996) A global self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res 101:8741–8743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luciana Oliveira dos Santos
    • 1
  • Leiliane Oliveira dos Santos
    • 1
  • Moirah Paula Machado de Menezes
    • 1
  • Colin Robert Beasley
    • 1
  • Ulf Mehlig
    • 1
  1. 1.Laboratório de Biologia Vegetal, Instituto de Estudos Costeiros (IECOS)Federal University of Pará (UFPA)BragançaBrazil

Personalised recommendations