Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combined effects of warming, snowmelt timing, and soil disturbance on vegetative development in a grassland community

Abstract

Climate warming and advanced snowmelt can simultaneously affect plant communities. However, the process of seasonal vegetative development under warming and early snowmelt conditions remains unclear, especially given that disturbance can amplify or dampen the effect of warming. This study addressed these issues using a 3-year experiment in a productive grassland in a cool temperate region. Three experimental conditions were established in the grassland: warming and early snowmelt using open-top chambers (OTCs), early snow removal and ambient temperature (SRs), and natural snowmelt and ambient temperature (CONTs). Half of the area of all plots was plowed to disturb soil conditions. Average temperature and snowmelt were 1.37 °C higher and 16–26 days earlier in OTCs relative to CONTs, respectively. Vegetation censuses during the 1–4 week intervals showed earlier increases in species richness and vegetation cover after snowmelt in OTCs than CONTs and SRs. Differences in species richness and plant cover among treatments were substantially diminished in plowed areas. Aboveground biomass showed little difference among treatments at the end of the growing season, while richness remained higher in OTCs. These results indicate that early snow removal did not alter grassland vegetation. The effect of OTCs can thus be due to either warming or a combination of early snowmelt and warming. Although climate change is predicted to have strong impacts on arctic and alpine ecosystems, this study suggests that the warming may also have important impacts in temperate regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Plate 1

References

  1. Aerts R, Cornelissen JHC, Dorrepaal E, van Logtestijn RSP, Callaghan TV (2004) Effects of experimentally imposed climate scenarios on flowering phenology and flower production of subarctic bog species. Glob Change Biol 10:1599–1609. doi:10.1111/j.1365-2486.2004.00815.x

  2. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol. doi:10.1007/s11258-005-9031-1

  3. Arft A, Walker M, Gurevitch J (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511

  4. Bannister P, Maegli T, Dickinson KJM, Halloy SRP, Knight A, Lord JM, Mark AF, Spencer KL (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256. doi:10.1007/s00442-005-0087-3

  5. Baptist F, Flahaut C, Streb P, Choler P (2010) No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol 12:755–764. doi:10.1111/j.1438-8677.2009.00286.x

  6. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi:10.1038/nature04141

  7. Bokhorst S, Huiskes A, Aerts R, Convey P, Cooper EJ, Dalen L, Erschbamer B, Gudmundsson J, Hofgaard A, Hollister RD, Johnstone J, Jónsdóttir IS, Lebouvier M, Van de Vijver B, Wahren C-H, Dorrepaal E (2013) Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74. doi:10.1111/gcb.12028

  8. Carbognani M, Petraglia A, Tomaselli M (2012) Influence of snowmelt time on species richness, density and production in a late snowbed community. Acta Oecol 43:113–120. doi:10.1016/j.actao.2012.06.003

  9. De Boeck HJ, Lemmens CMHM, Gielen B, Bossuyt H, Malchair S, Carnol M, Merckx R, Ceulemans R, Nijs I (2007) Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environ Exp Bot 60:95–104. doi:10.1016/j.envexpbot.2006.07.001

  10. Decker K, Wang D, Waite C, Scherbatskoy T (2003) Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci Soc Am J 67:1234–1243. doi:10.2136/sssaj2003.1234

  11. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders ? Trends Ecol Evol 14:135–139

  12. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland Ø, Troxler T, Wahren C-H, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi:10.1111/j.1461-0248.2011.01716.x

  13. Fukuyo S, Kurihara M, Nakashinden I, Kimura K, Iijima Y, Kobayashi Y, Masuzawa T, Yamamoto S, Morimoto M, Kouyama T, Kobayashi S, Yamamoto T, Mizuno K, Machida H (1998) Short-term effects of wind shield on phenology and growth of alpine plants in mount Kiso-komagatake, central japan (19th symposium on polar biology). Proc NIPR Symp Polar Biol 11:147–158

  14. Galen C, Stanton ML (1995) Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557

  15. Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765. doi:10.1126/science.289.5480.762

  16. Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world. Bioscience 58:253–262. doi:10.1641/B580311

  17. Hannah L, Carr J, Lankerani A (1995) Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers Conserv 4:128–155. doi:10.1007/BF00137781

  18. Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267:876–880. doi:10.1126/science.267.5199.876

  19. Hegland SJ, Nielsen A, Lázaro A, Bjerknes A-L, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. doi:10.1111/j.1461-0248.2008.01269.x

  20. Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob Change Biol 3:1–9. doi:10.1111/j.1365-2486.1997.gcb132.x

  21. Hudson JMG, Henry GHR (2010) High Arctic plant community resists 15 years of experimental warming. J Ecol 98:1035–1041. doi:10.1111/j.1365-2745.2010.01690.x

  22. Hudson JMG, Henry GHR, Cornwell WK (2011) Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob Change Biol 17:1013–1021. doi:10.1111/j.1365-2486.2010.02294.x

  23. Hülber K, Bardy K, Dullinger S (2011) Effects of snowmelt timing and competition on the performance of alpine snowbed plants. Perspect Plant Ecol Evol Syst 13:15–26

  24. Hunt ER, Jaffe MJ (1980) Thigmomorphogenesis: the interaction of wind and temperature in the field on the growth of Phaseolus vulgaris L. Ann Bot Lond 45:665–672

  25. Inouye D (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. doi:10.1890/06-2128.1

  26. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  27. Klanderud K (2005) Climate change effects on species interactions in an alpine plant community. J Ecol 93:127–137. doi:10.1111/j.1365-2745.2004.00944.x

  28. Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054. doi:10.1890/04-1563

  29. Klein JA, Harte J, Zhao X-Q (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179. doi:10.1111/j.1461-0248.2004.00677.x

  30. Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecol Res 19:255–259. doi:10.1111/j.1440-1703.2003.00630.x

  31. Kudo G, Ida TY, Tani T (2008) Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. Ecology 89:321–331. doi:10.1890/06-2131.1

  32. Lawton RO (1982) Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. Am J Bot 69:1224–1230

  33. Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32. doi:10.1111/j.1365-2486.1997.gcb136.x

  34. Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci USA 105:12353–12358. doi:10.1073/pnas.0802421105

  35. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 14 July 2014

  36. Roy BA, Güsewell S, Harte J (2004) Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570–2581. doi:10.1890/03-0182

  37. Rumpf SB, Semenchuk PR, Dullinger S, Cooper EJ (2014) Idiosyncratic responses of high Arctic plants to changing snow regimes. PLoS One 9:e86281. doi:10.1371/journal.pone.0086281

  38. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544

  39. Schöb C, Kammer PM, Choler P, Veit H (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecol 200:91–104. doi:10.1007/s11258-008-9435-9

  40. Semenchuk PR, Elberling B, Cooper EJ (2013) Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol Evol 3:2586–2599. doi:10.1002/ece3.648

  41. Stewart JR, Toma Y, Fernández FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153. doi:10.1111/j.1757-1707.2009.01010.x

  42. Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175. doi:10.1007/s00442-002-1028-z

  43. Wahren C-HA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi:10.1111/j.1365-2486.2005.00927.x

  44. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

  45. Whitehead FH (1962) Experimental studies of the effect of wind on plant growth and anatomy. New Phytol 61:59–62. doi:10.1111/j.1469-8137.1962.tb06274.x

  46. Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29:95–109. doi:10.1111/j.1751-8369.2010.00153.x

  47. Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change 94:105–121. doi:10.1007/s10584-009-9546-x

  48. Yang H, Wu M, Liu W, Zhang Z, Zhang N, Wan S (2011) Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17:452–465. doi:10.1111/j.1365-2486.2010.02253.x

  49. Yasunari T, Ueno K (1987) The snow cover environment in Sugadaira, central Japan. Ann Rep Inst Geosci Univ Tsukuba 13:58–64

Download references

Acknowledgments

I acknowledge the Sugadaira Montane Research Center, University of Tsukuba, for permission to conduct research within the site. I wish to thank Ryuji Kanai, Daisuke Masaki, Kouji Nagaoka, and Mariko Katsuyama for their research assistance, a member of SMRC for valuable advice on the field research, and Dr. Satoshi N. Suzuki for constructive comments on an earlier draft of the manuscript. This study was supported by Research and Education Funding for Japanese Alps Inter-Universities Cooperative Project, MEXT, Japan.

Author information

Correspondence to Ryo O. Suzuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 261 kb)

Supplementary material 2 (DOC 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R.O. Combined effects of warming, snowmelt timing, and soil disturbance on vegetative development in a grassland community. Plant Ecol 215, 1399–1408 (2014). https://doi.org/10.1007/s11258-014-0396-x

Download citation

Keywords

  • Cool temperate
  • Diversity
  • Miscanthus sinensis
  • Open-top chamber
  • Productivity
  • Snow removal