Plant Ecology

, Volume 215, Issue 9, pp 987–996 | Cite as

Reproductive allocation in rhizomatous, seminiferous, and pseudoviviparous Leiothrix (Eriocaulaceae) species

  • Ana Carolina Neves
  • Fernando Brina Nogueira
  • Luciana Rocha de Assis
  • Adriano Pereira Paglia
  • Lúcio Cadaval Bedê
  • Rogério Parentoni Martins


Pseudoviviparous species are considered to rely almost entirely on vegetative propagation, because flowers are replaced by sprouts, and seedling recruitment is rare. We compared reproductive allocation (inflorescence and seed production) in three propagation modes presented by sympatric species of Leiothrix (Eriocaulaceae): rhizomatous and seminiferous (RS—L. crassifolia); rhizomatous, seminiferous, and pseudoviviparous (RSP—L. spiralis); and seminiferous and pseudoviviparous, in which seed production is considered rare due to reduced inflorescence size and small number of pistillate flowers (SP—L. arrecta and L. propinqua). We hypothesize that such propagation modes constitute a continuum of reproductive investment, that is: RS > RSP > SP. We harvested 154 Leiothrix spp. individuals at the Serra do Cipó, SE Brazil, from which we recorded the number of capitula and seeds, mean seed weight, and dry biomass allocated to plant structures. We then compared distinct propagation modes in relation to reproductive allocation, inflorescence-based and seed-based reproductive effort, and biomass partitioning. Contrary to expectations, the reproductive investment hierarchy found was SP ≥ RS > RSP. Our results do not fully concur with the current view that pseudoviviparous plants allocate few resources to reproduction. We suggest that the larger reproductive investment observed in SP helps to wait for better recruitment conditions in crowded and highly competitive mature populations (temporal escape), and to cope with destructive disturbances such as fire, since SP species lacks rhizomes.


Propagation modes Rhizome Seminiferous Pseudovivipary Reproductive allocation Reproductive effort 



We thank Maria Letícia Figueiredo for assisting with field and laboratory work; Ana Maria Giulietti and Livia Eschternacht for taxonomic determination; Katia Ribeiro and Edward Elias Torres Jr. for supporting the work at the Serra do Cipó; two anonymous referees for valuable comments in the manuscript; and Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for granting work permissions and assisting with the study logistics at the Área de Proteção Ambiental Morro da Pedreira. This work was supported by the National Counsel of Technological and Scientific Development (CNPq) [Grant numbers 472070/2008-8, 140710/2008-6, edital PIBIC 01/2009], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (CAPES/Fapemig).


  1. Arizaga S, Ezcurra E (2002) Propagation mechanisms in Agave macrocantha (Agavaceae), a tropical arid-land succulent rosette. Am J Bot 89(4):632–641. doi: 10.3732/ajb.89.4.632 PubMedCrossRefGoogle Scholar
  2. Battey NH, Lyndon RF (1990) Reversion of flowering. Bot Rev 56:162–189CrossRefGoogle Scholar
  3. Bauert MR (1993) Vivipary in Polygonum viviparum: an adaptation to cold climate? Nord J Bot 13:473–480CrossRefGoogle Scholar
  4. Coelho FF, Neves ACO, Capelo C, Figueira JEC (2005) Pseudovivipary in two rupestrian endemic species (Leiothrix spiralis and Leiothrix vivipara). Curr Sci India 88:1225–1226Google Scholar
  5. Coelho FF, Capelo C, Neves ACO, Martins RP, Figueira JEC (2006) Seasonal timing of pseudoviviparous reproduction of Leiothrix (Eriocaulaceae) rupestrian species in Southeastern Brazil. Ann Bot Lond 98:1189–1195. doi: 10.1093/aob/mcl214 CrossRefGoogle Scholar
  6. Coelho FF, Capelo CDL, Neves ACO, Figueira JEC (2007) Vegetative propagation strategies of four rupestrian species of Leiothrix (Eriocaulaceae). Rev Bras Bot 30(4):687–694CrossRefGoogle Scholar
  7. Coelho FF, Capelo CDL, Figueira JEC (2008a) Seedlings and ramets recruitment in two rhizomatous species of Rupestrian grasslands: Leiothrix curvifolia var. lanuginosa and Leiothrix crassifolia (Eriocaulaceae). Flora 203:152–161CrossRefGoogle Scholar
  8. Coelho FF, Capelo CDL, Ribeiro L, Figueira JEC (2008b) Reproductive modes in Leiothrix (Eriocaulaceae) in South-eastern Brazil: the role of microenvironmental heterogeneity. Ann Bot 101:353–360. doi: 10.1093/aob/mcm289 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77:3–9CrossRefGoogle Scholar
  10. Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238CrossRefGoogle Scholar
  11. Eriksson O (1993) Dynamics of genets in clonal plants. Trends Ecol Evol 8:313–316PubMedCrossRefGoogle Scholar
  12. Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31:107–138. doi: 10.1146/annurev.ecolsys.31.1.107 CrossRefGoogle Scholar
  13. Galvão MV, Nimer E (1965) Clima. In: IBGE. Geografia do Brasil—Grande Região Leste, vol. 5. Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro, pp 91–139Google Scholar
  14. Giulietti AM (1984) Os gêneros Eriocaulon L. e Leiothrix Ruhl. (Eriocaulaceae) na Serra do Cipó, Minas Gerais, Brasil. Associate professorship Thesis, Universidade de São PauloGoogle Scholar
  15. Giulietti AM, Hensold N (1990) Padrões de distribuição geográfica dos gêneros de Eriocaulaceae. Acta Bot Bras 4(1):133–159CrossRefGoogle Scholar
  16. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies. Bol Bot Universidade de São Paulo 9:1–151Google Scholar
  17. Giulietti AM, Amaral MCE, Bittrich V (1995) Phylogenetic analysis of inter and infrageneric relationships of Leiothrix Ruhland (Eriocaulaceae). Kew Bull 50(1):55–69CrossRefGoogle Scholar
  18. Harper JL (1977) Population biology of plants. Academic Press, New YorkGoogle Scholar
  19. Harper JL (1985) Module, branches and the capture of resources. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 1–33Google Scholar
  20. Karlsson PS, Méndez M (2005) The resource economy of plant reproduction. In: Reekie E, Bazzaz F (eds) Reproductive allocation in plants. Elsevier Academic Press, San Diego, pp 1–49CrossRefGoogle Scholar
  21. Lee JA, Harmer R (1980) Vivipary, a reproductive strategy in response to environmental strees? Oikos 35:254–265CrossRefGoogle Scholar
  22. Miao SL, Kong L, Lorenzen B, Johnson RR (1998) Versatile modes of propagation in Cladium jamaicense in the Florida Everglades. Ann Bot Lond 82:285–290CrossRefGoogle Scholar
  23. Monteiro-Scanavacca WR, Mazzoni SC, Giulietti AM (1976) Reprodução vegetativa a partir da inflorescência em Eriocaulaceae. Bol Bot Universidade de São Paulo 4:61–72Google Scholar
  24. Neves ACO, Bedê LC, Martins RP (2011) Revisão sobre os efeitos do fogo em Eriocaulaceae como subsídio para a sua conservação. Bio Brasil 2:50–66Google Scholar
  25. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348. doi: 10.1046/j.1469-8137.2002.00477.x CrossRefGoogle Scholar
  26. Palleiro N, Mandujano MC, Golubov J (2006) Aborted fruits of Opuntia microdasys (Cactaceae): insurance against reproductive failure. Am J Bot 93(4):505–511. doi: 10.3732/ajb.93.4.505 PubMedCrossRefGoogle Scholar
  27. Pivello V (2011) The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol 7(1):24–39. doi: 10.4996/fireecology.0701024 CrossRefGoogle Scholar
  28. Scatena VL, Giulietti AM (1996) The taxonomy and morphological and anatomical differentiation of populations of Leiothrix crassifolia (Eriocaulaceae). Plant Syst Evol 199:243–258CrossRefGoogle Scholar
  29. Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. P Natl Acad Sci USA 106(48):20359–20364. doi: 10.1073/pnas.0903410106 CrossRefGoogle Scholar
  30. Vuorisalo T, Tuomi J (1996) Unitary and modular organisms: criteria for ecological division. Oikos 47(3):382–385CrossRefGoogle Scholar
  31. Wang CN, Möller M, Cronk QCB (2004) Aspects of sexual failure in the reproductive processes of a rare bulbiliferous plant, Titanotrichum oldhamii (Gesneriaceae), in Subtropical Asia. Sex Plant Reprod 17:23–31. doi: 10.1007/s00497-004-0213-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana Carolina Neves
    • 1
  • Fernando Brina Nogueira
    • 1
  • Luciana Rocha de Assis
    • 1
  • Adriano Pereira Paglia
    • 1
  • Lúcio Cadaval Bedê
    • 2
  • Rogério Parentoni Martins
    • 3
  1. 1.Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto Terra BrasilisBelo HorizonteBrazil
  3. 3.Departamento de BiologiaUniversidade Federal do Ceará, Centro de CiênciasFortalezaBrazil

Personalised recommendations