Advertisement

Plant Ecology

, Volume 215, Issue 8, pp 911–925 | Cite as

Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus

  • M. M. CarónEmail author
  • P. De Frenne
  • J. Brunet
  • O. Chabrerie
  • S. A. O. Cousins
  • L. De Backer
  • M. Diekmann
  • B. J. Graae
  • T. Heinken
  • A. Kolb
  • T. Naaf
  • J. Plue
  • F. Selvi
  • G. R. Strimbeck
  • M. Wulf
  • K. Verheyen
Article

Abstract

Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.

Keywords

Acer platanoides Acer pseudoplatanus Climate change Seed traits Latitudinal gradient 

Notes

Acknowledgments

We thank the Research Foundation-Flanders (FWO) for funding the Scientific Research Network “FLEUR” (www.fleur.ugent.be), the data providers in the ECA&D project (Data and metadata available at http://www.ecad.eu) and Centro Funzionale della Regione Toscana”, and “Archivio CFS-Ufficio Territoriale per la Biodiversità di Pratovecchio. This paper was written while MMC held a Ph.D. fellowship from the Erasmus Mundus funding through the EuroTango project and PDF held a postdoctoral fellowship from the FWO.

Supplementary material

11258_2014_343_MOESM1_ESM.pdf (36 kb)
Supplementary material 1 (PDF 35 kb)

References

  1. Adler PB, HilleRisLambers J (2008) The influence of climate and species composition on the population dynamics of ten prairie forbs. Ecology 89:3049–3060. doi: 10.1890/07-1569.1 CrossRefGoogle Scholar
  2. Arnold RL, Fenner M, Edwards PJ (1995) Influence of potassium nutrition on germinability, abscisic acid content and sensitivity of the embryo to abscisic acid in developing seeds of Sorghum bicolor (L.) Moench. New Phytol 130:207–216CrossRefGoogle Scholar
  3. Baraloto C, Forget P-M (2007) Seed size, seedling morphology, and response to deep shade and damage in neotropical rain forest trees. Am J Bot 94:901–911. doi: 10.3732/ajb.94.6.901 PubMedCrossRefGoogle Scholar
  4. Baskin CC, Baskin JM (1998) Seeds. In: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  5. Beckman NG, Muller-Landau HC (2011) Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology 92:2131–2140. doi: 10.1890/10-2378.1 PubMedCrossRefGoogle Scholar
  6. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377CrossRefGoogle Scholar
  7. Carón MM, De Frenne P, Brunet J, et al. (2014) Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides. Plant Biol. doi: 10.1111/plb.12177
  8. Castro J, Reich PB, Sánchez-Miranda A, Guerrero JD (2008) Evidence that the negative relationship between seed mass and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine. Tree Physiol 28:1077–1082PubMedCrossRefGoogle Scholar
  9. Conklin JR, Sellmer JC (2009) Germination and seed viability of norway maple cultivars, hybrids, and species. Horttechnology 19:120–126Google Scholar
  10. Dalling JW, Harms KE (1999) Damage tolerance and cotyledonary resource use in the tropical tree Gustavia superba. Oikos 85:257–264CrossRefGoogle Scholar
  11. Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. J Ecol 99:557–568CrossRefGoogle Scholar
  12. De Frenne P, Graae BJ, Kolb A et al (2010) Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L. For Ecol Manage 259:809–817CrossRefGoogle Scholar
  13. De Frenne P, Kolb A, Graae BJ et al (2011) A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa. Plant Biol 13:493–501. doi: 10.1111/j.1438-8677.2010.00404.x PubMedCrossRefGoogle Scholar
  14. De Frenne P, Graae BJ, Rodríguez-Sánchez F et al (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:493–501. doi: 10.1111/1365-2745.12074 CrossRefGoogle Scholar
  15. Drenovsky RE, Richards JH (2005) Nitrogen addition increases fecundity in the desert shrub Sarcobatus vermiculatus. Oecologia 143:349–356. doi: 10.1007/s00442-004-1821-y PubMedCrossRefGoogle Scholar
  16. Enger H, Riehm H, Domingo WR (1960) Unteruchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II, Chemische Extraktionsmethoden zur Phosphur- und Kaliumbestimmung. K Lantbrukshögkolans Ann 199–215Google Scholar
  17. Espelta JM, Bonal R, Sánchez-Humanes B (2009) Pre-dispersal acorn predation in mixed oak forests: interspecific differences are driven by the interplay among seed phenology, seed size and predator size. J Ecol 97:1416–1423. doi: 10.1111/j.1365-2745.2009.01564.x CrossRefGoogle Scholar
  18. EUFORGEN (2009) Distribution map of Sycamore (Acer pseudoplatanus). www.euroforgen.org
  19. Farnsworth EJ, Nuñez-Farfán J, Careaga SA, Bazzaz FA (1995) Phenology and growth of three temperate forest life forms in response to artificial soil warming. J Ecol 83:967–977CrossRefGoogle Scholar
  20. Fenner M (1992) Seeds: the ecology of regeneration in plant communities. CAB International, WallingfordGoogle Scholar
  21. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, New YorkGoogle Scholar
  22. Fitter AH, Peat HJ (1994) The ecological flora database. J Ecol 82:415–425CrossRefGoogle Scholar
  23. Foster SA, Janson CH (1985) The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66:773–780CrossRefGoogle Scholar
  24. Fukami T, Wardle DA (2005) Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc Royal Soc Biol 272:2105–2115Google Scholar
  25. Graae BJ, Verheyen K, Kolb A et al (2009) Germination requirements and seed mass of slow- and fast-colonizing temperate forest herbs along a latitudinal gradient. Ecoscience 16:248–257. doi: 10.2980/16-2-3234 CrossRefGoogle Scholar
  26. Graae BJ, De Frenne P, Kolb A et al (2012) On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19. doi: 10.1111/j.1600-0706.2011.19694.x CrossRefGoogle Scholar
  27. Green PT, Juniper PA (2004) Seed mass, seedling herbivory and the reserve effect in tropical rainforest seedlings. 18:539–547Google Scholar
  28. Hanewinkel M, Cullmann DA, Schelhaas M-J et al (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207CrossRefGoogle Scholar
  29. Hedhly A, Hormaza JI, Herrero M (2008) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36PubMedCrossRefGoogle Scholar
  30. Hovenden MJ, Wills KE, Chaplin RE et al (2008) Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob Chang Biol 14:1633–1641. doi: 10.1111/j.1365-2486.2008.01597.x CrossRefGoogle Scholar
  31. IBM Corp (2012) SPSS statistics for windows, Version 21.0. IBM, New YorkGoogle Scholar
  32. Koch GW, Vitousek PM, Steffen WL, Walker BH (1995) Terrestrial transects for global change research. Vegetatio 121:53–65. doi: 10.1007/bf00044672 CrossRefGoogle Scholar
  33. Kramer K, Degen B, Buschbom J et al (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For Ecol Manage 259:2213–2222CrossRefGoogle Scholar
  34. Leishman M, Westoby M (1994) The role of seed size in seedling—experimental evidence from conditions species—Experimental evidence from semi–arid species. J Ecol 82:249–258CrossRefGoogle Scholar
  35. Lenoir J, Gégout JC, Marquet PA, et al. (2008) A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science (80-) 320:1768–1771Google Scholar
  36. Lloret F, Pen J (2004) Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. 248–258. doi: 10.1111/j.1529-8817.2003.00725.x
  37. Marrush M, Yamaguchi M, Saltveit ME (1998) Effect of potassium nutrition during bell pepper seed development on vivipary and endogenous levels of abscisic acid (ABA). J Am Soc Hortic Sci 5:925–930Google Scholar
  38. Meunier C, Sirois L, Bégin Y (2007) Climate and Picea mariana seed maturation relationships: a multi-scale perspective. Ecol Monogr 77:361–376CrossRefGoogle Scholar
  39. Moles AT, Westoby M (2003) Latitude, seed predation and seed mass. J Biogeogr 30:105–128. doi: 10.1046/j.1365-2699.2003.00781.x CrossRefGoogle Scholar
  40. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105CrossRefGoogle Scholar
  41. Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Chang Biol 9:1792–1801CrossRefGoogle Scholar
  42. Pérez-Ramos IM, Gómez-Aparicio L, Villar R et al (2010) Seedling growth and morphology of three oak species along field resource gradients and seed mass variation: a seedling age-dependent response. J Veg Sci 21:419–437. doi: 10.1111/j.1654-1103.2009.01165.x CrossRefGoogle Scholar
  43. Piper EL, Boote KI (1999) Temperature and cultivar effects on soybean seed oil and protein concentrations. J Am Oil Chem Soc 76:1233–1241. doi: 10.1007/s11746-999-0099-y CrossRefGoogle Scholar
  44. Quero JL, Villar R, Marañón T et al (2007) Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am J Bot 94:1795–1803. doi: 10.3732/ajb.94.11.1795 PubMedCrossRefGoogle Scholar
  45. R Core Team (2013) R: a language and environment for statistical computing. ViennaGoogle Scholar
  46. Rasband WS (2012) ImageJ, U S National Institutes of Health, Bethesda, Maryland, U S A. imagej.nih.gov/ij/, 1997–2012
  47. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006. doi: 10.1073/pnas.0403588101 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Soriano D, Orozco-Segovia A, Marquez-Guzman J et al (2011) Seed reserve composition in 19 tree species of a tropical deciduous forest in Mexico and its relationship to seed germination and seedling growth. Ann Bot 107:939–951. doi: 10.1093/aob/mcr041 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Souza AF, Uarte de Matos D, Forgiarini C, Martinez J (2010) Seed crop size variation in the dominant South American conifer Araucaria angustifolia. Acta Oecologica 36:126–134. doi: 10.1016/j.actao.2009.11.001 CrossRefGoogle Scholar
  50. Sun X, Kang H, Du H et al (2012) Stoichiometric traits of oriental oak (Quercus variabilis) acorns and their variations in relation to environmental variables across temperate to subtropical China. Ecol Res 27:765–773. doi: 10.1007/s11284-012-0953-5 CrossRefGoogle Scholar
  51. Svenning J-C, Skov F (2006) Potential impact of climate change on the northern nemoral forest herb flora of Europe. Biodivers Conserv 15:3341–3356CrossRefGoogle Scholar
  52. Tank K, Coauthors AMG, et al. (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Clim 22:1441–1453. doi:  10.1002/joc.773
  53. The tetrazolium subcommittee of the association of official seed analysts (2000) Tetrazolium testing handbook contribution no. 29 to the handbook on seed testing. Lewis, MichiganGoogle Scholar
  54. Valencia-Díaz S, Montaña C (2005) Temporal variability in the maternal environment and its effect on seed size and seed quality in Flourensia cernua DC. (Asteraceae). J Arid Environ 63:686–695. doi:http://dx.doi.org/10.1016/j.jaridenv.2005.03.024
  55. Walck JL, Hidayati S, Dixon KW, et al. (2011) Climate change and plant regeneration from seed. Glob Chang Biol. doi:  10.1111/j.1365-2486.2010.02368.x
  56. Webb DP, Wareing PF (1972) Seed dormancy in Acer pseudoplatanus L.: the role of the covering structures. J Exp Bot 23:813–829. doi: 10.1093/jxb/23.3.813 CrossRefGoogle Scholar
  57. Westoby M, Leishman M, Lord J et al (1996) Comparative ecology of seed size and dispersal [and discussion]. Philos Trans R Soc B Biol Sci 351:1309–1318. doi: 10.1098/rstb.1996.0114 CrossRefGoogle Scholar
  58. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. doi: 10.1890/070037 CrossRefGoogle Scholar
  59. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  60. Wulff RD (1986) Seed size variation in Desmodium paniculatum. J Ecol 74:87–97CrossRefGoogle Scholar
  61. Zerche S, Ewald A (2005) Seed potassium concentration decline during maturation is inversely related to subsequent germination of primrose. J Plant Nutr 28:573–603. doi: 10.1081/pln-200052631 CrossRefGoogle Scholar
  62. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with r. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. M. Carón
    • 1
    Email author
  • P. De Frenne
    • 1
  • J. Brunet
    • 2
  • O. Chabrerie
    • 3
  • S. A. O. Cousins
    • 4
  • L. De Backer
    • 5
  • M. Diekmann
    • 6
  • B. J. Graae
    • 7
  • T. Heinken
    • 8
  • A. Kolb
    • 6
  • T. Naaf
    • 9
  • J. Plue
    • 4
  • F. Selvi
    • 10
  • G. R. Strimbeck
    • 7
  • M. Wulf
    • 9
    • 11
  • K. Verheyen
    • 1
  1. 1.Forest & Nature LabGhent UniversityGontrode-MelleBelgium
  2. 2.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  3. 3.Jules Verne University of Picardie, UR Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS-UPJV)Amiens Cedex 1France
  4. 4.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  5. 5.Sylva nurseries BVBAWaarschootBelgium
  6. 6.Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2University of BremenBremenGermany
  7. 7.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  8. 8.Biodiversity and Systematic Botany, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  9. 9.Institute of Land Use SystemsLeibniz-Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  10. 10.Department of Agrifood Production and Environmental Sciences, section of Soil and Plant SciencesUniversity of FlorenceFlorenceItaly
  11. 11.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany

Personalised recommendations