Skip to main content

Advertisement

Log in

Evolution of serotiny in maritime pine (Pinus pinaster) in the light of increasing frequency of fires

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Wildfire frequency and intensity in the Mediterranean region are predicted to increase with climate and anthropogenic changes in the following decades. Pines species often posses fire-embracing and fire-avoiding strategies that increase the probability of persistence and performance in fire-prone habitats. One such strategy is serotiny, i.e., the capacity to retain seeds in long-closed cones within the plant canopy; serotinous cones release seeds only when either a fire or a heat shock occurs. In this work, we used a simulation approach and Pinus pinaster populations as a model system to investigate how (i) an increased frequency of fire, (ii) genetic characteristics of serotiny, and (iii) observed differences in life histories interact to determine (a) risk of local population extinction and (b) temporal changes in the prevalence of serotiny in the modeled population. In addition, we tested whether the contemporary evolution of serotiny in the face of increased probability of occurrence of fires increased the probability of population persistence with respect to a scenario in which serotiny was not allowed to evolve. Our simulations showed that over the 300 years of simulated time, the evolution of serotiny did not substantially contribute to the persistence of populations. Extinction risk increased with the increasing probability of occurrence of fire and slightly decreased with (i) higher gene flow from outside the modeled population, and (ii) higher prevalence of serotiny at the beginning of the simulation. The prevalence of serotiny at the end of simulation time was difficult to predict and mostly driven by stochasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–290. doi:10.1016/j.foreco.2011.01.039

    Google Scholar 

  • Benkman CW, Siepielski AM (2004) A keystone selective agent? Pine squirrels and the frequency of serotiny in lodgepole pine. Ecology 85:2082–2087. doi:10.1890/04-0177

    Article  Google Scholar 

  • Bradshaw SD, Dixon KW, Hopper SD et al (2011) Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci 16:69–76. doi:10.1016/j.tplants.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  • Budde KB, Heuertz M, Hernández-Serrano A et al (2014) In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phytol 201:230–241. doi:10.1111/nph.12483

    Article  CAS  PubMed  Google Scholar 

  • Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211

    Article  Google Scholar 

  • De Las Heras J, Moya D, Vega JA, Al E (2012) Chapter 6: Post-fire management of serotinous Pine forests. In: Moreira F, Arianoutsou M, Corona P, De las Heras J (eds) Post-fire management and restoration of southern European forests. Springer, New York, pp 121–150

    Chapter  Google Scholar 

  • De-Lucas AI, Robledo-Arnuncio JJ, Hidalgo E, González-Martínez SC (2008) Mating system and pollen gene flow in Mediterranean maritime pine. Heredity (Edinb) 100:390–399. doi:10.1038/sj.hdy.6801090

    Article  CAS  Google Scholar 

  • Diez JM, D’Antonio CM, Dukes JS et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi:10.1890/110137

    Article  Google Scholar 

  • Dury M, Hambuckers A, Warnant P et al (2011) Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. iForest 4:82–99. doi:10.3832/ifor0572-004

    Article  Google Scholar 

  • Enright NJ, Marsula R, Lamont BB, Wissel C (1998) The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubs. J Ecol 86:946–959

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Prentice Hall, Harlow, p 464

    Google Scholar 

  • Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manag 256:246–255. doi:10.1016/j.foreco.2008.04.032

    Google Scholar 

  • Frederiksen M, Daunt F, Harris MP, Wanless S (2008) The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J Anim Ecol 77:1020–1029. doi:10.1111/j.1365-2656.2008.01422.x

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Bergeron Y, Simon J-P (1996) Effects of fire regime on the serotiny level of jack pine. J Ecol 84:539–548

    Article  Google Scholar 

  • Gill AM, Allan G (2008) Large fires, fire effects and the fire-regime concept. Int J Wildl Fire 17:688. doi:10.1071/WF07145

    Article  Google Scholar 

  • González-Martínez SC, Burczyk J, Nathan R et al (2006) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15:4577–4588. doi:10.1111/j.1365-294X.2006.03118.x

    Article  PubMed  Google Scholar 

  • Goubitz S, Nathan R, Roitemberg R et al (2004) Canopy seed bank structure in relation to: fire, tree size and density. Plant Ecol 173:191–201. doi:10.1023/B:VEGE.0000029324.40801.74

    Article  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Greenville AC, Wardle GM, Dickman CR (2012) Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature. Ecol Evol 2:2645–2658. doi:10.1002/ece3.377

    Article  PubMed Central  PubMed  Google Scholar 

  • Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729

    Article  CAS  PubMed  Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160:21–42. doi:10.1046/j.1469-8137.2003.00866.x

    Article  Google Scholar 

  • Hartl DL (1979) Selection for serotiny in lodgepole pine: mathematical analysis of the model of Perry and Lotan. Evolution (NY) 33:969–972

    Article  Google Scholar 

  • He T, Pausas JG, Belcher CM et al (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 194:751–759. doi:10.1111/j.1469-8137.2012.04079.x

    Article  PubMed  Google Scholar 

  • Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG (2013) Fire structures pine serotiny at different scales. Am J Bot 100:2349–2356. doi:10.3732/ajb.1300182

    Article  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007. Synthesis report. Contribution of Working Groups I, II & III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Dahe Q (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 6:315–324

    Google Scholar 

  • Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob Chang Biol 15:837–849. doi:10.1111/j.1365-2486.2008.01690.x

    Article  Google Scholar 

  • Johnson EA, Gutsell SL (1993) Heat budget and fire behaviour associated with the opening of serotinous cones in two. J Veg Sci 4:745–750

    Article  Google Scholar 

  • Juez L, González-Martínez SC, Nanos N et al (2014) Can seed production and restricted dispersal limit recruitment in Pinus pinaster Aiton from the Spanish Northern Plateau? For Ecol Manag 313:329–339. doi:10.1016/j.foreco.2013.10.033

    Google Scholar 

  • Kazanis D, Arianotsou M (2004) Factors determining low Mediterranean ecosystems resilience to fire: the case of Pinus halepensis forests. In: Proceedings of 10th MEDECOS conference

  • Keeley JE (2012) Ecology and evolution of pine life histories. Ann For Sci 69:445–453. doi:10.1007/s13595-012-0201-8

    Article  Google Scholar 

  • Keeley JE, Zedler PH (1998) Evolution of life histories in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pines. Cambridge University Press, Cambridge, p 219

    Google Scholar 

  • Keeley JE, Bond WJ, Bradstock RA et al (2011a) Fire in mediterranean ecosystems: ecology, evolution and management. Landsc Ecol 28:571–572

    Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW et al (2011b) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411. doi:10.1016/j.tplants.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Lamont BB, Enright NJ (2000) Adaptive advantages of aerial seed banks. Plant Species Biol 15:157–166. doi:10.1046/j.1442-1984.2000.00036.x

    Article  Google Scholar 

  • Lamont BB, Maitre DC, Cowling RM, Enright NJ (1991) Canopy seed storage in woody plants. Bot Rev 57:277–317. doi:10.1007/BF02858770

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetic and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mangel M, Tier C (1993) A simple direct method for finding persistence times of populations and application to conservation problems. Proc Natl Acad Sci USA 90:1083–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Màrcia E, Iraima V, Francisco L, Josep Maria E (2006) Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula). For Ecol Manag 231:47–54. doi:10.1016/j.foreco.2006.05.007

    Google Scholar 

  • Milner AM, Robertson AL, McDermott MJ et al (2012) Major flood disturbance alters river ecosystem evolution. Nat Clim Chang 3:137–141. doi:10.1038/nclimate1665

    Article  Google Scholar 

  • Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) Pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 2:557–567

  • Moreno JM, Vazquez A, Velez R (1998) Recent history of forest fires in Spain. In: Moreno JM (ed) Large forest fires. Backhuys Publishers, Leiden, pp 159–186

    Google Scholar 

  • Muir PS, Lotan JE (1985) Disturbance history and serotiny of Pinus contorta in Western Montana. Ecology 66:1658–1668

    Article  Google Scholar 

  • Ne’eman G, Goubitz S, Nathan R (2004) Reproductive traits of Pinus halepensis in the light of fire—a critical review. Plant Ecol 171:69–79

    Article  Google Scholar 

  • Parchman TL, Gompert Z, Mudge J et al (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005. doi:10.1111/j.1365-294X.2012.05513.x

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. J Veg Sci 10:717–722

    Article  Google Scholar 

  • Pausas JG (2004) Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350

    Article  Google Scholar 

  • Pausas JG, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226. doi:10.1007/s10584-011-0060-6

    Article  Google Scholar 

  • Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin?—A review. Int J Wildl Fire 17:713. doi:10.1071/WF07151

    Article  Google Scholar 

  • Pausas JG, Alessio GA, Moreira B, Corcobado G (2012) Fires enhance flammability in Ulex parviflorus. New Phytol 193:18–23

    Article  PubMed  Google Scholar 

  • Perry DA, Lotan JE (1979) A model of fire selection for serotiny in lodgepole pine. Evolution (NY) 33:958–968

    Article  Google Scholar 

  • Piessens K, Adriaens D, Jacquemyn H, Honnay O (2009) Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia 159:117–126. doi:10.1007/s00442-008-1204-x

    Article  PubMed  Google Scholar 

  • Pinol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357

    Article  Google Scholar 

  • Radeloff VC, Mladenoff DJ, Guries RP, Boyce MS (2004) Spatial patterns of cone serotiny in Pinus banksiana in relation to fire disturbance. For Ecol Manag 189:133–141. doi:10.1016/j.foreco.2003.07.040

    Google Scholar 

  • Roff D (2002) Life history evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Santos-del-Blanco L, Climent J, González-Martínez SC, Pannell JR (2012) Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster. Ann Bot 110:1449–1460. doi:10.1093/aob/mcs210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saracino A, Pacella R, Leone V et al (1997) Seed dispersal and changing seed characteristics in a Pinus halepensis Mill. forest after fire. Plant Ecol 130:13–19

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi:10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  • Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 2:326–336

    Article  Google Scholar 

  • Shama LNS, Kubow KB, Jokela J, Robinson CT (2011) Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations. BMC Evol Biol 11:278. doi:10.1186/1471-2148-11-278

    Article  PubMed Central  PubMed  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81. doi:10.1111/mec.12506

    Article  CAS  PubMed  Google Scholar 

  • Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–663. doi:10.1111/j.1365-2745.2011.01798.x

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Tapias R, Gil L, Fuentes-Utrilla P, Pardos JA (2001) Canopy seed banks in Mediterranean pines of south-eastern Spain: a comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J Ecol 89:629–638. doi:10.1046/j.1365-2745.2001.00575.x

    Article  Google Scholar 

  • Tapias R, Climent J, Pardos JA, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171:53–68. doi:10.1023/B:VEGE.0000029383.72609.f0

    Article  Google Scholar 

  • Teich AH (1970) Cone serotiny and inbreeding in natural populations of Pinus banksiana and Pinus contorta. Can J Bot 48:1805–1809

    Article  Google Scholar 

  • Thibault KM, Brown JH (2008) Impact of an extreme climatic event on community assembly. Proc Natl Acad Sci USA 105:3410–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RM, Beardall J, Beringer J et al (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16:799–806. doi:10.1111/ele.12095

    Article  PubMed  Google Scholar 

  • Tinker DB, Romme WH, Hargrove WW et al (1994) Landscape-heterogeneity in lodgepole pine serotiny. Can J For Res 24:897–903

    Article  Google Scholar 

  • Tonnabel J, Van Dooren TJM, Midgley J et al (2012) Optimal resource allocation in a serotinous non-resprouting plant species under different fire regimes. J Ecol 100:1464–1474. doi:10.1111/j.1365-2745.2012.02023.x

    Article  Google Scholar 

  • Tryjanowski P, Sparks TH, Profus P (2009) Severe flooding causes a crash in production of white stork (Ciconia ciconia) chicks across Central and Eastern Europe. Basic Appl Ecol 10:387–392. doi:10.1016/j.baae.2008.08.002

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F et al (2012) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 5:1–5. doi:10.1038/nclimate1627

    Google Scholar 

  • White WJ, Rassweiler A, Samhouri JF et al (2013) Ecologists should not use statistical significance tests to interpret simulation model results. Oikos. doi:10.1111/j.1600-0706.2013.01073.x

    Google Scholar 

  • Zedler PH (1995) Fire frequency in southern California shrublands: biological effects and management options. In: Keeley JE, Scott T (eds) Brushfires in California wildlands: ecology and resource management. International Association of Wildland Fire, Fairfield, pp 101–112

    Google Scholar 

Download references

Acknowledgments

The authors thank Stefano Leonardi and William H. Satterthwaite for their helpful comments on an earlier version of the manuscript. Simone Vincenzi is supported by an IOF Marie Curie Fellowship FP7-PEOPLE-2011-IOF for the project “RAPIDEVO” on rapid evolutionary responses to climate change in natural populations and by the Center for Stock Assessment Research (CSTAR). Andrea Piotti is supported by the Italian MIUR project “Approccio multitaxa allo studio delle risposte della biodiversità italiana al cambiamento climatico” (RBAP10A2T4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Vincenzi.

Additional information

Communicated by Thomas Abeli, Rodolfo Gentili and Anne Jäkäläniemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincenzi, S., Piotti, A. Evolution of serotiny in maritime pine (Pinus pinaster) in the light of increasing frequency of fires. Plant Ecol 215, 689–701 (2014). https://doi.org/10.1007/s11258-014-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0342-y

Keywords

Navigation