Advertisement

Plant Ecology

, Volume 215, Issue 8, pp 899–910 | Cite as

Effects of enhanced nitrogen inputs and climate warming on a forest understorey plant assessed by transplant experiments along a latitudinal gradient

  • Sybryn L. MaesEmail author
  • Pieter De FrenneEmail author
  • Jörg Brunet
  • Eduardo de la Peña
  • Olivier Chabrerie
  • Sara A. O. Cousins
  • Guillaume Decocq
  • Martin Diekmann
  • Robert Gruwez
  • Martin Hermy
  • Annette Kolb
  • Kris Verheyen
Article

Abstract

Global warming and enhanced nitrogen (N) inputs are two key global-change drivers affecting temperate forest ecosystems simultaneously. Interactive effects of multiple drivers might cause species responses to differ from those in single-factor experiments; therefore, there is an urgent need for more multi-factor studies. Here, we assessed the growth and reproductive performance of multiple populations of a widespread grass of deciduous forests (Milium effusum) sampled along a latitudinal gradient and subjected to experimental manipulations of temperature and nitrogen availability. Common garden transplant experiments along the latitudinal gradient were used to manipulate temperatures and combined with experimental N addition to assess intraspecific responses of the study species to global-change drivers as well as to determine local adaptation. The total biomass, number of seeds and seedling emergence time of M. effusum increased when transplanted in the southern common garden. Apart from effects on the seed mass, the species did not respond to N addition alone. Yet, interactive effects between warming and N addition were found: N addition led to increased biomass growth but only in the northern common garden. Significant home-site advantages were apparent, most likely because of increased mycorrhizal colonization of roots of local transplants. We show that multiple global-change drivers may alter dynamics in understorey communities of temperate forests. Our study reinforces the need to increase our understanding of plant responses to future environmental changes by expanding the multi-factor research framework.

Keywords

Climate change Common garden experiment Forest understorey Latitude Local adaptation Mycorrhiza Nitrogen deposition Deciduous forest 

Notes

Acknowledgments

We thank the Research Foundation—Flanders (FWO) for funding the scientific research network FLEUR (http://www.fleur.ugent.be). Support for this work was provided by the Kempe Foundation, Petra and Karl Erik Hedborg Foundation, an EU Transnational Access Program ATANS Grant (Fp6 506004), FWO post-doctoral fellowships (to PDF and EDLP) and the Special Research Fund of Ghent University (to RG). We are also grateful to Anna Shevtsova, Bente Graae, Thilo Heinken, Sharon Stanton, An De Schrijver, Luc Willems, Greet De bruyn, Rob Dhondt, Emma Holmström and Eva Sorgeloos and the staff at the Abisko Scientific Research Station for discussions, accommodation, facilities and assistance with the field work.

Supplementary material

11258_2014_341_MOESM1_ESM.pdf (28 kb)
Table S1. Temperature data in the two common gardens (PDF 28 kb)

References

  1. Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad W, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934CrossRefGoogle Scholar
  2. Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169CrossRefGoogle Scholar
  3. Bertrand R, Lenoir J, Piedallu C et al (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520PubMedCrossRefGoogle Scholar
  4. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59PubMedCrossRefGoogle Scholar
  5. Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438CrossRefGoogle Scholar
  6. Brunet J, De Frenne P, Holmström E, Mayr ML (2012) Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs. For Ecol Manag 278:55–62CrossRefGoogle Scholar
  7. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715PubMedCrossRefGoogle Scholar
  8. Cornelissen JHC, Diez PC, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J Ecol 84:755–765CrossRefGoogle Scholar
  9. De Frenne P, Brunet J, Shevtsova A et al (2011) Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob Change Biol 17:3240–3253CrossRefGoogle Scholar
  10. De Frenne P, Graae BJ, Brunet J et al (2012) The response of forest plant regeneration to temperature variation along a latitudinal gradient. Ann Bot 109:1037–1046PubMedCentralPubMedCrossRefGoogle Scholar
  11. De Frenne P, Graae BJ, Rodríguez-Sánchez F et al (2013a) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795CrossRefGoogle Scholar
  12. De Frenne P, Rodríguez-Sánchez F, Coomes DA et al (2013b) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci USA 110:18561–18565PubMedCentralPubMedCrossRefGoogle Scholar
  13. De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–816CrossRefGoogle Scholar
  14. Delatte E, Chabrerie O (2008) Seed dispersal efficiency of forest herbaceous plant species by the ant Myrmica ruginodis. CR Biol 331:309–320CrossRefGoogle Scholar
  15. Development Core Team R (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Dieleman WIJ, Vicca S, Dijkstra FA et al (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Change Biol 18:2681–2693CrossRefGoogle Scholar
  17. Dirnböck T, Grandin U, Bernhardt-Römermann M et al (2013) Forest floor vegetation response to nitrogen deposition in Europe. Glob Change Biol 20:429–440CrossRefGoogle Scholar
  18. Dunne JA, Saleska SR, Fischer ML, Harte J (2004) Integrating experimental and gradient methods in ecological climate change research. Ecology 85:904–916CrossRefGoogle Scholar
  19. Falkengren-Grerup U, Ericson L, Gunnarsson U, Nordin A, Rydin H, Wallén B (2000) Does nitrogen deposition change the flora? In: Bertills UNT (ed) Effects of nitrogen deposition on forest ecosystems [Report 5067]. Swedish Environmental Protection Agency, StockholmGoogle Scholar
  20. Forsythe WC, Rykiel EJ, Stahl RS, Wu H, Schoolfield RM (1995) A model comparison for daylength as a function of latitude and day of year. Ecol Model 80:87–95CrossRefGoogle Scholar
  21. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  22. Garten CT (2000) Nitrogen saturation and soil N availability in a high-elevation spruce and fir forest. Water Air Soil Pollut 120:295–313CrossRefGoogle Scholar
  23. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191CrossRefGoogle Scholar
  24. Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858CrossRefGoogle Scholar
  25. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  26. Graae BJ (2002) The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. Seed Sci Res 12:113–120CrossRefGoogle Scholar
  27. Harrison MJ (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2:54–60CrossRefGoogle Scholar
  28. Hedwall PO, Nordin A, Strengbom J, Brunet J, Olsson B (2013) Does background nitrogen deposition affect the response of boreal vegetation to fertilization? Oecologia 173:615–624PubMedCrossRefGoogle Scholar
  29. Heinken T, Raudnitschka D (2002) Do wild ungulates contribute to the dispersal of vascular plants in Central European forests by epizoochory? A case study in NE Germany. Eur J For Res 121:179–194Google Scholar
  30. Hultén E, Fries M (1986) Atlas of north European vascular plants: North of the Tropic of Cancer, Vol 1–3. Koeltz Scientific Books, KönigsteinGoogle Scholar
  31. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  32. Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, LondonGoogle Scholar
  33. Ma L-N, Lü X-T, Liu Y, Guo J-X, Zhang N-Y, Yang J-Q, Wang R-Z (2011) The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China. PlosOne 6:e27645CrossRefGoogle Scholar
  34. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  35. Milbau A, Graae BJ, Shevtsova A, Nijs I (2009) Effects of a warmer climate on seed germination in the subarctic. Ann Bot 104:287–296PubMedCentralPubMedCrossRefGoogle Scholar
  36. Nilsson M-C, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428CrossRefGoogle Scholar
  37. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  38. Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rustad LE (2008) The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–235PubMedCrossRefGoogle Scholar
  40. Rustad LE, Campbell J, Marion G et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  41. Suzuki JI, Stuefer J (1999) On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biol 14:11–17CrossRefGoogle Scholar
  42. Templer PH, Reinmann AB (2011) Multi-factor global change experiments: what have we learned about terrestrial carbon storage and exchange? New Phytol 192:797–800PubMedCrossRefGoogle Scholar
  43. Thimonier A, Dupouey JL, Bost F, Becker M (1994) Simultaneous eutrophication and acidification of a forest ecosystem in north-east France. New Phytol 126:533–539CrossRefGoogle Scholar
  44. Turnau K, Mitka J, Kedzierska A (1992) Mycorrhizal status of herb-layer plants in a fertilized oak-pine forest. Plant Soil 143:148–152CrossRefGoogle Scholar
  45. Turner MM, Henry HAL (2009) Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field: seasonal trends. Glob Change Biol 15:2885–2893CrossRefGoogle Scholar
  46. Tyler T (2002) Geographic structure of genetic variation in the widespread woodland grass Milium effusum L. A comparison between two regions with contrasting history and geomorphology. Genome 45:1248–1256PubMedCrossRefGoogle Scholar
  47. Verheyen K, Baeten L, De Frenne P et al (2012) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–365CrossRefGoogle Scholar
  48. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 12:5004–5007Google Scholar
  49. von Oheimb G, Schmidt M, Kriebitzsch WU, Ellenberg H (2005) Dispersal of vascular plants by game in northern Germany Part II: red deer (Cervus elaphus). Eur J For Res 124:55–65CrossRefGoogle Scholar
  50. Zuur AF, Ieno EN, Walker N (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sybryn L. Maes
    • 1
    Email author
  • Pieter De Frenne
    • 1
    Email author
  • Jörg Brunet
    • 2
  • Eduardo de la Peña
    • 1
    • 3
  • Olivier Chabrerie
    • 4
  • Sara A. O. Cousins
    • 5
  • Guillaume Decocq
    • 4
  • Martin Diekmann
    • 6
  • Robert Gruwez
    • 1
  • Martin Hermy
    • 7
  • Annette Kolb
    • 6
  • Kris Verheyen
    • 1
  1. 1.Forest & Nature LabGhent UniversityMelle-GontrodeBelgium
  2. 2.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  3. 3.Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
  4. 4.Edysan (FRE 3498), Centre National de la Recherche ScientifiqueUniversité de Picardie Jules VerneAmiens cedexFrance
  5. 5.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  6. 6.Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2University of BremenBremenGermany
  7. 7.Division Forest, Nature and LandscapeK.U.LeuvenLouvainBelgium

Personalised recommendations