Plant Ecology

, Volume 215, Issue 4, pp 379–388 | Cite as

CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments

  • Daniel Negreiros
  • Soizig Le Stradic
  • G. Wilson Fernandes
  • Henrique C. Rennó


The classification of plant species according to the CSR ecological strategy scheme has been proposed as a common language that allows comparison among species, communities, and floras. Although several studies on European continent have demonstrated a consistent association between CSR strategies and key ecosystem processes, studies of this type are still lacking in other ecoregions worldwide. For the first time, the CSR strategy scheme is applied in a tropical plant community. In a Brazilian mountain grassland ecosystem characterized by both high biodiversity and environmental stress, we sampled various functional traits of 48 herbaceous species in stony and sandy grasslands, and evaluated the relationship between CSR strategies and functional traits with several environmental parameters. The extremely infertile soils in the two studied habitats may have acted as a major environmental filter leading to a clear predominance of the stress-tolerant strategy in both communities. However, fine-scale environmental differences between the two communities resulted in the filtering of distinct functional trait values. The sites with coarser soil texture, lower percentage of plant cover and (paradoxically) higher mineral nutrient concentrations favored plants with narrower leaves, higher stress tolerance, lower competitiveness, and higher sclerophylly (i.e., lower specific leaf area and higher leaf dry matter content). The comparison between the functional character of stony and sandy communities evidenced the influence of soil texture and water availability in the environmental filtering. This study highlighted the validity of the CSR classification outside the temperate region where it was originally developed and corroborated.


Comparative ecology Leaf economics spectrum Resource use Rupestrian grasslands Soil texture Trait–environment relationship 

Supplementary material

11258_2014_302_MOESM1_ESM.pdf (37 kb)
Online Resource 1 Functional traits of 48 herbaceous species sampled in the stony and sandy grasslands of the Serra do Cipó, MG, Brazil (PDF 37 kb)
11258_2014_302_MOESM2_ESM.pdf (1.2 mb)
Online Resource 2 Influence of exclusive and rare species in the detection of environmental filtering (PDF 1187 kb)
11258_2014_302_MOESM3_ESM.pdf (803 kb)
Online Resource 3 Validation of the CSR classification for a tropical grassland vegetation (PDF 804 kb)


  1. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  2. Batalha MA, Silva IA, Cianciaruso MV, França H, Carvalho GH (2011) Phylogeny, traits, environment, and space in cerrado plant communities at Emas National Park (Brazil). Flora 206:949–956CrossRefGoogle Scholar
  3. Benites VM, Schaefer CER, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  4. Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20CrossRefGoogle Scholar
  5. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  6. Cerabolini BEL, Brusa G, Ceriani RM, de Andreis R, Luzzaro A, Pierce S (2010a) Can CSR classification be generally applied outside Britain? Plant Ecol 210:253–261CrossRefGoogle Scholar
  7. Cerabolini B, Pierce S, Luzzaro A, Ossola A (2010b) Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecol 207:333–345CrossRefGoogle Scholar
  8. Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:578–592Google Scholar
  9. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I: one-table methods. R News 4:5–10Google Scholar
  10. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  11. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304CrossRefGoogle Scholar
  12. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166CrossRefGoogle Scholar
  14. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  15. Dray S, Legendre P (2008) Testing the species traits–environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412PubMedCrossRefGoogle Scholar
  16. Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206:782–791CrossRefGoogle Scholar
  17. Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (1997) Manual de métodos e análises de solo, 2nd edn. EMBRAPA/CNPSO, Rio de JaneiroGoogle Scholar
  18. Frenette-Dussault C, Shipley B, Meziane D, Hingrat Y (2013) Trait-based climate change predictions of plant community structure in arid steppes. J Ecol 101:484–492CrossRefGoogle Scholar
  19. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation. WWF/IUCN, Cambridge, pp 397–404Google Scholar
  20. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  21. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:901–910CrossRefGoogle Scholar
  22. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, ChichesterGoogle Scholar
  23. Grime JP, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  24. Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC et al (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281CrossRefGoogle Scholar
  25. Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C–S–R plant functional types: a soft approach to a hard problem. Oikos 85:282–294CrossRefGoogle Scholar
  26. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  27. Lavorel S, Grigulis K, Lamarque P, Colace M-P, Garden D, Girel J, Douzet R, Pellet G (2011) Using plant functional traits to understand the landscape-scale distribution of multiple ecosystem services. J Ecol 99:135–147CrossRefGoogle Scholar
  28. Le Stradic S (2012) Composition, phenology and restoration of campo rupestre mountain grasslands—Brazil. PhD thesis, Université d’Avignon et des Pays de Vaucluse, Avignon & Universidade Federal de Minas Gerais, Belo HorizonteGoogle Scholar
  29. Madeira J, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó. J Trop Ecol 15:463–479CrossRefGoogle Scholar
  30. Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Centro Nacional de Conservação da Flora, Rio de JaneiroGoogle Scholar
  31. Massant W, Godefroid S, Koedam N (2009) Clustering of plant life strategies on meso-scale. Plant Ecol 205:47–56CrossRefGoogle Scholar
  32. Mcg King W, Wilson JB (2006) Differentiation between native and exotic plant species from a dry grassland: fundamental responses to resource availability, and growth rates. Austral Ecol 31:996–1004CrossRefGoogle Scholar
  33. Messias MCTB, Leite MGP, Meira Neto JAA, Kozovits AR, Tavares R (2013) Soil–vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521CrossRefGoogle Scholar
  34. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893CrossRefGoogle Scholar
  35. Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol 12:183–196PubMedCrossRefGoogle Scholar
  36. Negreiros D, Fernandes GW, Silveira FAO, Chalub C (2009) Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol 35:301–310CrossRefGoogle Scholar
  37. Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175CrossRefGoogle Scholar
  38. Pierce S, Luzzaro A, Caccianiga M, Ceriani RM, Cerabolini B (2007) Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J Ecol 95:698–706CrossRefGoogle Scholar
  39. Pierce S, Brusa G, Sartori M, Cerabolini B (2012) Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109:1047–1053PubMedCentralPubMedCrossRefGoogle Scholar
  40. Saporetti-Junior AW, Schaefer CEGR, Souza AL, Soares MP, Araújo DSD, Meira-Neto JAA (2012) Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobot 47:29–39CrossRefGoogle Scholar
  41. Silva DM, Batalha MA (2011) Defense syndromes against herbivory in a cerrado plant community. Plant Ecol 212:181–193CrossRefGoogle Scholar
  42. Silva FC, Eira PA, Van Raij B, Silva CA, Abreu CA, Gianello C, Pérez DV, Quaggio JA, Tedesco MJ, Abreu MF, Barreto WO (1999) Análises químicas para a avaliação da fertilidade do solo. In: Silva FC (ed) Manual de análises químicas de solos, plantas e fertilizantes. EMBRAPA, Brasília, pp 75–169Google Scholar
  43. Silveira FAO, Ribeiro RC, Oliveira DMT, Fernandes GW, Lemos-Filho JP (2012) Evolution of physiological dormancy multiple times in Melastomataceae from neotropical montane vegetation. Seed Sci Res 22:37–44CrossRefGoogle Scholar
  44. Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol 14:1125–1140CrossRefGoogle Scholar
  45. R Development Core Team (2012) R: a language and environment for statistical computing. Version 2.15.1. R Foundation for Statistical Computing, Vienna. Accessed 23 June 2012
  46. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  47. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daniel Negreiros
    • 1
  • Soizig Le Stradic
    • 1
    • 2
  • G. Wilson Fernandes
    • 1
  • Henrique C. Rennó
    • 1
  1. 1.Ecologia Evolutiva e Biodiversidade/DBGICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.UMR CNRS/IRD 7263/237 IMBE, Institut Méditerranéen de Biodiversité et d’EcologieUniversité d’Avignon et des Pays de VaucluseAvignon cedex 9France

Personalised recommendations