Plant Ecology

, Volume 214, Issue 9, pp 1147–1156 | Cite as

Climatic responses of tree-ring width and δ13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply

  • Werner HärdtleEmail author
  • Thomas Niemeyer
  • Thorsten Assmann
  • Armin Aulinger
  • Andreas Fichtner
  • Anne Lang
  • Christoph Leuschner
  • Burkhard Neuwirth
  • Laurent Pfister
  • Markus Quante
  • Christian Ries
  • Andreas Schuldt
  • Goddert von Oheimb


We investigated climate–growth relationships (in terms of tree-ring width, basal area increment (BAI), and tree-ring δ13C signatures) of Quercus petraea in Central Europe (Luxembourg). Tree responses were assessed for 160 years and compared for sites with contrasting water supply (i.e. Cambisols vs. Regosols with 175 and 42 mm available water capacity, respectively). Oak trees displayed very low climate sensitivity, and climatic variables explained only 24 and 21 % of variance in tree-ring width (TRW) (Cambisol and Regosol sites, respectively). Contrary to our expectations, site-related differences in growth responses (i.e. BAI, δ13C signatures) to climate shifts were not significant. This finding suggests a high plasticity of oak trees in the study area. Despite a distinct growth depression found for all trees in the decade 1988–1997 (attributable to increasing annual mean temperatures by 1.1 °C), oak trees completely recovered in subsequent years. This indicates a high resilience of sessile oak to climate change. Shifts in δ13Ccorr signatures were mainly affected by temperature, and peaks in δ13Ccorr values (corrected for the anthropogenic increase in atmospheric CO2) coincided with decadal maximum temperatures. Correlations between δ13C signatures and TRW (mainly affected by precipitation) were not significant. This finding suggests that wood growth often was disconnected from carbon assimilation (e.g. due to carbon storage in the trunk or allocation to seeds). Since the selection of drought-resistant tree species gains importance within the context of adaptive forest management strategies, Q. petraea proves to be an adaptive tree species in Central Europe’s forests under shifting climatic conditions.


Climate change Dendrochemistry Dendroecology Luxembourg Water use efficiency 


  1. Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo MF (2013) Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544–554PubMedCrossRefGoogle Scholar
  2. Boden AG (1994) Bodenkundliche Kartieranleitung, 3rd edn. University of Hannover, Hannover, p 392Google Scholar
  3. Bolte A, Ammer C, Lof M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  4. Bruschi P (2010) Geographical variation in morphology of Quercus petraea (Matt.) Liebl. as related to drought stress. Plant Biosyst 144:298–307CrossRefGoogle Scholar
  5. Bukata AR, Kyser TK (2007) Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environ Sci Technol 41:1331–1338PubMedCrossRefGoogle Scholar
  6. Bukata AR, Kyser TK (2008) Tree-ring elemental concentrations in oak do not necessarily passively record changes in bioavailability. Sci Total Environ 390:275–286PubMedCrossRefGoogle Scholar
  7. Cedro A (2007) Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: comparison of the climatic determinants of tree-ring width. Geochronometria 26:39–45CrossRefGoogle Scholar
  8. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. For Ecol Manag 173:63–78CrossRefGoogle Scholar
  9. Drogue G, Mestre O, Hoffman L, Iffly JF, Pfister L (2005) Recent warming in a small region with semi-oceanic climate, 1949–1998: what is the ground truth? Theor Appl Climatol 81:1–10CrossRefGoogle Scholar
  10. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ulmer, StuttgartGoogle Scholar
  11. Freyermuth A, Pfister L (2010) Monographie hydro-climatologique du Luxembourg, vol 1 (partie texte), vol 2 (partie annexe). Musée National d’Histoire Naturelle, Centre de Recherche Public Gabriel-Lippmmann, Administration des Services Techniques de L’agriculture, Société des Naturalistes Luxembourgeois, LuxembourgGoogle Scholar
  12. Friedrichs DA, Buntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Phys 29:39–51CrossRefGoogle Scholar
  13. Hart SC, Classen AT (2003) Potential for assessing long-term dynamics in soil nitrogen availability from variations in delta N-15 of tree rings. Isot Environ Health Stud 39:15–28CrossRefGoogle Scholar
  14. Högberg P (1997) Tansley review no 95—N-15 natural abundance in soil–plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  15. Johnson SE, Abrams MD (2009) Basal area increment trends across age classes for two long-lived tree species in the Eastern U.S. In: Kaczka et al. (eds) Tree rings in archaeology, climatology and ecology, vol 7. GFZ Potsdam, Scientific technical report 09/03, pp 127–134Google Scholar
  16. Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363CrossRefGoogle Scholar
  17. Krippel Y (2005) Is the conservation of the natural and cultural heritage of sandstone landscapes guaranted? Case study of the Petite Suisse area in Luxembourg. Ferrantia 44:147–152Google Scholar
  18. Leavitt SW, Long A (1989) Drought indicated C-13/C-12 ratios of southwestern tree rings. Water Resour Bull 25:341–347CrossRefGoogle Scholar
  19. Lebourgeois F, Cousseau G, Ducos Y (2004) Climate–tree-growth relationships of Quercus petraea Mill. stand in the Forest of Berce (“Futaie des Clos”, Sarthe, France). Ann For Sci 61:361–372CrossRefGoogle Scholar
  20. Lebourgeois F, Breda N, Ulrich E, Granier A (2005) Climate–tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees Struct Funct 19:385–401CrossRefGoogle Scholar
  21. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manag 149:33–46CrossRefGoogle Scholar
  22. Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650PubMedCrossRefGoogle Scholar
  23. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  24. Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095CrossRefGoogle Scholar
  25. Mérian P, Bontemps JD, Bergés L, Lebourgeois F (2011) Spatial variation and temporal instability in growth–climate relationships of sessile oak (Quercus petraea [Matt.] Liebl.) under temperate conditions. Plant Ecol 212:1855–1871CrossRefGoogle Scholar
  26. Mölder I, Leuschner C, Leuschner HH (2011) δ13C signature of tree rings and radial increment of Fagus sylvatica trees as dependent on tree neighbourhood and climate. Trees Struct Funct 25:215–229CrossRefGoogle Scholar
  27. Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729PubMedCrossRefGoogle Scholar
  28. Nielsen CN, Jorgensen FV (2003) Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: variation between and within provenances. For Ecol Manag 174:233–249CrossRefGoogle Scholar
  29. Nock CA, Baker PJ, Wanek W, Leis A, Grabner M, Bunyavejchewin S, Hietz P (2011) Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biol 17:1049–1063CrossRefGoogle Scholar
  30. Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring delta C-13 at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14:1076–1088CrossRefGoogle Scholar
  31. Pfister L, Wagner C, Vansuypeene E, Drogue G, Hoffmann L (2005) Atlas climatique du grand-duché de Luxembourg. Johnen-Druck GmbH, LuxembourgGoogle Scholar
  32. Pretzsch H (1999) Changes in forest growth. Forstwiss Cbl 118:228–250CrossRefGoogle Scholar
  33. Pretzsch H, Dursky J (2002) Growth reaction of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus silvatica L.) to possible climatic changes in Germany: a sensitivity study. Forstwiss Cbl 121:145–154CrossRefGoogle Scholar
  34. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity: global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  35. Saurer M, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol 10:2109–2120CrossRefGoogle Scholar
  36. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J Geophys Res Biogeosci 113:11CrossRefGoogle Scholar
  37. Steubing L, Fangmeier A (1992) Pflanzenökologisches Praktikum. Parey, BerlinGoogle Scholar
  38. Sun F, Kuang Y, Wen D, Xu Z, Li J, Zuo W, Hou E (2010) Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China. J Soil Sediment 10:1453–1465CrossRefGoogle Scholar
  39. Tardieu F, Granier C, Muller B (2011) Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 14:283–289PubMedCrossRefGoogle Scholar
  40. Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307CrossRefGoogle Scholar
  41. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental/Swiss Alps): a case study with respect to altitude, exposure and soil moisture. Tellus 53B:593–611Google Scholar
  42. Weigl M, Grabner M, Helle G, Schleser GH, Wimmer R (2008) Characteristics of radial growth and stable isotopes in a single oak tree to be used in climate studies. Sci Total Environ 393:154–161PubMedCrossRefGoogle Scholar
  43. Weiner J, Thomas SC (2001) The nature of tree growth and the age-related decline in forest productivity. Oikos 94:374–376CrossRefGoogle Scholar
  44. WRB—IUSS Working Group (2006) World reference base for soil resources, 2nd edn. World soil resources reports no. 103. FAO, RomeGoogle Scholar
  45. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416CrossRefGoogle Scholar
  46. Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manag 167:27–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Werner Härdtle
    • 1
    Email author
  • Thomas Niemeyer
    • 1
  • Thorsten Assmann
    • 1
  • Armin Aulinger
    • 2
  • Andreas Fichtner
    • 3
  • Anne Lang
    • 1
  • Christoph Leuschner
    • 4
  • Burkhard Neuwirth
    • 5
  • Laurent Pfister
    • 6
  • Markus Quante
    • 2
  • Christian Ries
    • 7
  • Andreas Schuldt
    • 1
  • Goddert von Oheimb
    • 1
  1. 1.Institute of EcologyUniversity of LüneburgLüneburgGermany
  2. 2.Institute of Coastal ResearchHelmholtz-Center GeesthachtGeesthachtGermany
  3. 3.Institute of Natural Resource ConservationUniversity of KielKielGermany
  4. 4.Albrecht von Haller Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
  5. 5.DeLaWi Tree Ring AnalysisWindeckGermany
  6. 6.Centre de Recherche Public—Gabriel LippmannBelvauxLuxembourg
  7. 7.Musée National d’Histoire NaturelleLuxembourgLuxembourg

Personalised recommendations