Plant Ecology

, Volume 214, Issue 5, pp 669–683 | Cite as

Spatiotemporal dynamics of plant occurrence in an urban forest fragment

  • Pertti Ranta
  • Ville Viljanen
  • Tarmo Virtanen


The study area is an urban forest remnant in the city of Tampere (Finland). The presence of vascular plant species were surveyed in 1980 and again in 2000 within the 5 × 5 m grid cells covering the whole forest. The forest fragment has been influenced by three types of urban pressure: general ecological conditions (such as eutrophication due to increase of nitrogen), edge effect and local human disturbance. A general and spatially even eutrophication was reflected in the frequencies of C- and S-strategists as a shift towards to the C-point in the CSR triangle. The total number of native species (83 in 1980, 89 in 2000), typical Vaccinium type (VT)-forest species (32 in 1980, 31 in 2000) and aliens (57 in 1980, 68 in 2000) did change, but only to a moderate extent. The number of typical VT-forest species and native species were more common in central parts of the fragment. In terms of the number of species, the forest has been relatively resistant to date to major changes. However, the average number of native plant species per grid cell increased from 13.7 to 14.4, the average number of aliens increased from 2.0 to 4.2 and the average number of typical VT-forest species decreased from 5.5 to 5.0. Natives were spatially concentrated in the centre in 1980, but in 2000 they were more evenly distributed. The edge has offered habitats for new species, but the typical VT-forest species of the original sub-xeric forest are slowly diminishing.


Urban forests Edge effect Native plants species Alien plant species CSR-life strategies 



Mr Jouko Sipari helped with the field work and Professor Jari Niemela provided helpful comments. Dr. Stephen Venn helped to correct the English language. This study was supported by the Finnish Biodiversity Research Programme, Grant 39715.


  1. Brooks M (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40(2):344–353CrossRefGoogle Scholar
  2. Breuste J (2009) Structural analysis of urban landscapes for landscape management in German cities. In: McDonnell M, Hahs A, Breuste J (eds) Ecology of cities and towns. A comparative approach. Cambridge University Press, Cambridge, pp 355–379CrossRefGoogle Scholar
  3. Bundesamt für Naturschutz (2011) FloraWeb. Accessed 22 Jan 2012
  4. Cadenasso M, Pickett S (2008) Effects of edge structure on the flux of species into forest interiors. Conserv Biol 15(1):91–97Google Scholar
  5. Cajander AK (1926) The theory of forest types. Acta Forestalia Fennica 29(3):1–108Google Scholar
  6. Chocholouškova Z, Pyšek P (2003) Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzen. Flora 198:366–376CrossRefGoogle Scholar
  7. Cillier S, Siebert S (2011) Urban flora and vegetation: patterns and processes. In: Niemelä J, Breuste J, Elmqvist T, Guntensbergen G, James P, McIntyre N (eds) Urban ecology. Patterns, processes, and applications. Oxford University Press, Oxford, pp 148–158Google Scholar
  8. Colautti R, MacIsaac H (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141CrossRefGoogle Scholar
  9. Diekmann M (1995) Use and improvement of Ellenberg′s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography 18:178–189CrossRefGoogle Scholar
  10. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506CrossRefGoogle Scholar
  11. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders. Trends Ecol Evol 14:135–139PubMedCrossRefGoogle Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth W, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248Google Scholar
  13. Godefroid S, Koedam N (2003) Identifying indicator plant species of habitat quality and invasibility as a guide for peri-urban forest management. Biodivers Conserv 12:1699–1713CrossRefGoogle Scholar
  14. Grime J (1979) Plant strategies and vegetation processes. Wiley, New YorkGoogle Scholar
  15. Grime J (2002) Plant strategies, vegetation processes, and ecosystem properties. Wiley, New YorkGoogle Scholar
  16. Haila Y (2002) A conceptual genealogy of fragmentation research in landscape ecology. Ecol Appl 12:321–334Google Scholar
  17. Hamberg L, Lehvävirta S, Malmivaara-Lämsä M, Rita H, Kotze D (2008) The effects of habitat edges and trampling on understorey vegetation in urban forests in Helsinki, Finland. Appl Veg Sci 11:83–98CrossRefGoogle Scholar
  18. Hamberg L, Malmivaara-Lämsä M, Lehvävirta S, Kotze D (2009) The effects of soil fertility on the abundance of rowan (Sorbus aucuparia L.) in urban forests. Plant Ecol 204:21–32CrossRefGoogle Scholar
  19. Hamberg L, Fedrowitz K, Lehvävirta S, Kotze D (2010) Vegetation changes at sub-xeric urban forest edges in Finland—the effects of edge aspect and trampling. Urb Ecosyst 13:583–603CrossRefGoogle Scholar
  20. Harris L (1984) The fragmented forest. The University of Chicago Press, ChicagoGoogle Scholar
  21. Hodgson J (1991) The use of ecological theory and autecological datasets in studies of endangered plant and animal species and communities. Pirineos 138:3–28CrossRefGoogle Scholar
  22. Hotanen J.-P, Nousiainen H, Mäkipää R, Reinikainen A, Tonteri T (2008) Metsätyypitopas kasvupaikkojen luokitteluun. Metsäntutkimuslaitos. Metsäkustannus OyGoogle Scholar
  23. Hämet-Ahti L, Suominen J, Ulvinen T, Uotila P (eds) (1998) Retkeilykasvio (Field Flora of Finland), 4th edn. Finnish Museum of Natural History, Botanical Museum, HelsinkiGoogle Scholar
  24. Kalliola R (1973) Suomen kasvimaantiede. WSOY, HelsinkiGoogle Scholar
  25. Kittamaa S, Ryttäri T, Ajosenpää T, Aapala K, Hallman E, Lehesvirta T,Tukia H (2009) Harjumetsien paahdeympäristöt–nykytila ja hoito. (Sun—exposed esker forest habitats—state and management). The Finnish environment 25/2009: 88Google Scholar
  26. Kuuluvainen T (2002) Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia. Silva Fennica 36(1):97–125Google Scholar
  27. Lawesson J, Fosaa A, Olsen E (2003) Calibration of 599 Ellenberg indicator values for the Faroes Islands. Appl Veg Sci 6:53–62CrossRefGoogle Scholar
  28. Lehvävirta S, Rita H (2002) Natural regeneration of trees in urban woodlands. J Veg Sci 13:57–66CrossRefGoogle Scholar
  29. Malmivaara-Lämsä M (2008) Effects of recreational use and fragmentation on the understory vegetation and soil microbial communities of urban forests in southern Finland. Dissertationes Forestales 54. Faculty of Biosciences, University of HelsinkiGoogle Scholar
  30. Massant W, Godefroid S, Koedam N (2009) Clustering of plant life strategies on meso-scale. Plant Ecol 205:47–56CrossRefGoogle Scholar
  31. Murcia C (1995) Edge effects in fragmented forest: implication for conservation. Trends Ecol Evol 10(2):58–62PubMedCrossRefGoogle Scholar
  32. Nieppola J (1992) Long-term vegetation changes in stands of Pinus sylvestris in southern Finland. J Veg Sci 3(4):475–484CrossRefGoogle Scholar
  33. Nieminen J (2006) Tampereen kaupungin vanhat metsät- selvitys (report, old forest in the city of Tampere, in Finnish). Tampereen kaupunki: ympäristövalvonta, kiinteistötoimi, katu- ja vihertuotanto, ympäristövalvonta, kiinteistötoimiGoogle Scholar
  34. Ode Å, Fry G (2006) A model for quantifying and predicting urban pressure on woodland. Landsc Urb Plan 77(1–2):17–27CrossRefGoogle Scholar
  35. Pirkanmaan liitto (2008) Pirkanmaan arvokkaat harjualueet. Pirkanmaan liiton julkaisu B 108Google Scholar
  36. Prescott C (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200PubMedCrossRefGoogle Scholar
  37. Prinzig A, Durka W, Klotz S, Brandl R (2002) Which species become aliens? Evol Ecol Res 4:385–405Google Scholar
  38. Pärtel M, Kalamees R, Zobel M, Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. J Veg Sci 10:561–570CrossRefGoogle Scholar
  39. Ranta P, Viljanen V, Tanskanen A, Asikainen E, Jokinen A (2012) Tampereen kasvit ja kaupunkiekologia. Lutukka 28:3–17 (in Finnish with English summary: vascular plants and urban ecology in the city of Tampere, S Finland)Google Scholar
  40. Reinikainen A, Mäkipää R, Vanha-Majamaa I, Hotanen JP (eds) (2001) Kasvit muuttuvassa metsäluonnossa (with English summary: Changes in the frequency and abundance of forest and mire plants in Finland since 1950). Gummerus, JyväskyläGoogle Scholar
  41. Schaffers A, Sýkora K (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  42. Tampereen kaupunki (2012) Tampereen kaupungin luonnonsuojeluohjelma 2012–2020. Tampereen kaupunki. YmpäristösuojeluyksikköGoogle Scholar
  43. Williamson M (1999) Invasions. Ecography 22:5–12CrossRefGoogle Scholar
  44. Williamson M, Fitter A (1996) The characters of successfull invaders. Biol Conserv 78:163–170Google Scholar
  45. Wilson J, Lee W (2000) CSR triangle theory: community-level predictions, tests, evaluation of criticism, and relation to other theories. Oikos 91:77–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.School of Management, University of TampereTampereFinland

Personalised recommendations