Plant Ecology

, Volume 214, Issue 2, pp 317–327

Human-induced changes on fine-scale genetic structure in Ulmus laevis Pallas wetland forests at its SW distribution limit

  • Martin Venturas
  • Pablo Fuentes-Utrilla
  • Richard Ennos
  • Carmen Collada
  • Luis Gil
Article

Abstract

Human activities have deeply transformed the Mediterranean landscape for millennia. Wetland and riverbed vegetation are among the most affected ecosystems because of the value of these areas for agriculture, due to their rich soil and water availability. This has caused the fragmentation, population reduction, and extinction of many species. We focus our study on Ulmus laevis Pallas, an endangered tree species in the Iberian Peninsula, as an extreme example of these formations. We study the diversity and fine-scale spatial genetic structure of two human disturbed wetland populations with chloroplast markers and nuclear microsatellites. We evaluate their recovery possibilities, and how they will be affected by future aridification and water table depletion. Our results show that although these populations have suffered bottlenecks and have low genetic diversity, they maintain the same diversity levels as the European populations. Despite the low genetic variation that could contribute to inbreeding problems in the future, we discuss that the main threat of the species is habitat destruction. Finally, we propose some management and conservation policies to ameliorate these effects.

Keywords

Ulmus laevis Spatial genetic structure Endangered species Conservation Wetland forests Management guidelines 

Supplementary material

11258_2013_170_MOESM1_ESM.pdf (49 kb)
Online Resource 1 Tables with the details of Spanish Ulmus laevis Pall. populations and the location of U. laevis trees within towns. Supplementary material 1 (PDF 48 kb)
11258_2013_170_MOESM2_ESM.pdf (48 kb)
Online Resource 2 Breast height diametric distribution of Quitapesares and Valdelatas Ulmus laevis populations. Supplementary material 2 (PDF 48 kb)

References

  1. Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98CrossRefGoogle Scholar
  2. Antrop M (2005) Why landscapes of the past are important for the future. Lands Urban Plan 70:21–34CrossRefGoogle Scholar
  3. Casado S, Montes C (1995) Guía de los lagos y humedales de España. Ed. J.M. Reyero, MadridGoogle Scholar
  4. Collada C, Fuentes-Utrilla P, Gil L, Cervera MT (2004) Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall. Mol Ecol Notes 4(4):731–732CrossRefGoogle Scholar
  5. Collin E (2003) EUFORGEN Technical guidelines for genetic conservation and use for European white elm (Ulmus laevis). Forestry. International Plant Genetic Resources Institute, RomeGoogle Scholar
  6. Collin E, Rusanen M, Ackzell L et al (2004) Methods and progress in the conservation of elm genetic resources in Europe. Invest Agrar: Sist Recur For 13(1):261–272Google Scholar
  7. Colmenares D (1640) Historia de la insigne ciudad de Segovia y compendio de las historias de Castilla. Segovia, MadridGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  9. De Luis M, Brunetti M, Gonzalez-Hidalgo J, Longares LA, Martin-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob Planet Change 74:27–33CrossRefGoogle Scholar
  10. Deiller AF, Walter JMN, Trémolières M (2003) Regeneration strategies in a temperate hardwood floodplain forest of the Upper Rhine: sexual versus vegetative reproduction of woody species. For Ecol Manag 180:215–225CrossRefGoogle Scholar
  11. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer MB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCrossRefGoogle Scholar
  12. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Evol Syst 24:217–242CrossRefGoogle Scholar
  13. Fuentes-Utrilla P (2008) Estudio de la variabilidad genética del género Ulmus L. en España mediante marcadores moleculares. Dissertation, Universidad Politécnica de MadridGoogle Scholar
  14. Gallego-Fernández JB, García-Mora MR, García-Novo F (1999) Small wetlands lost: a biological conservation hazard in Mediterranean landscapes. Environ Conserv 26(3):190–199CrossRefGoogle Scholar
  15. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2):305–318PubMedCrossRefGoogle Scholar
  16. Gil L, García-Nieto ME (1990) Paleobotánica e historia de los olmos de la Península Ibérica. In: Gil L (ed) Los olmos y la grafiosis en España. ICONA, Madrid, pp 29–65Google Scholar
  17. Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179PubMedCrossRefGoogle Scholar
  18. Goodall-Copestake WP, Hollingsworth ML, Hollingsworth PM, Jenkins GI, Collin E (2005) Molecular markers and ex situ conservation of the European elms (Ulmus spp.). Biol Conserv 122(4):537–546CrossRefGoogle Scholar
  19. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from: goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  20. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  21. Hooke JM (2006) Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79:311–355CrossRefGoogle Scholar
  22. Iriarte MJ (2009) Vegetation landscape and the anthropization of the environment in the central sector of the Northern Iberian Peninsula: current status. Quat Int 200(1–2):66–76CrossRefGoogle Scholar
  23. Kikuchi S, Suzuki W, Sashimura N (2011) Gene flow in an endangered willow Salix hukaoana (Salicaceae) in natural and fragmented riparian landscapes. Conserv Genet 12(1):79–89CrossRefGoogle Scholar
  24. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understorey shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  25. López RA (2000) Paleobotánica de los olmos. In: Gil L, Solla A, Iglesias S (eds) Los olmos ibéricos. Conservación y mejora frente a la grafiosis. Organismo Autónomo Parques Nacionales, Madrid, pp 49–68Google Scholar
  26. López de Heredia U, Venturas M, López RA, Gil L (2010) High biogeographical and evolutionary value of Canary Island pine populations out of the elevational pine belt: the case of a relict coastal population. J Biogeogr 37:2371–2383CrossRefGoogle Scholar
  27. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247PubMedCrossRefGoogle Scholar
  28. Milleron M, López de Heredia U, Lorenzo Z et al (2012) Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol. doi:10.1007/s11258-012-0125-2
  29. Mittempergher L, Porta N (1991) Hybridization studies in the Eurasian species of elm (Ulmus spp.). Silvae Genet 40(5/6):237–243Google Scholar
  30. Moreno JM (2005) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, MadridGoogle Scholar
  31. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  32. Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean stone pine cone production: yield loss as response to climate change. Agric For Meteorol 132:263–272CrossRefGoogle Scholar
  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  34. Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145PubMedCrossRefGoogle Scholar
  35. Nielsen LR, Kjær ED (2010) Fine-scale gene flow and genetic structure in a relic Ulmus laevis population at its northern range. Tree Genet Genomes 6(5):643–649CrossRefGoogle Scholar
  36. Pimm SL, Gittleman JL, McCracken GF (1998) Plausible alternatives to bottlenecks to explain reduced genetic diversity. Trends Ecol Evol 4(6):176–178CrossRefGoogle Scholar
  37. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  39. Rodríguez JA, Weatherhead EK, Knox JW, Camacho E (2007) Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Chang 7:149–159CrossRefGoogle Scholar
  40. Stafford PJ (1995) The Northwest European Pollen Flora. Ulmaceae. Rev Palaeobot Palyno 88:25–46CrossRefGoogle Scholar
  41. Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166PubMedGoogle Scholar
  42. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8(2):299–301PubMedCrossRefGoogle Scholar
  43. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250PubMedCrossRefGoogle Scholar
  44. Valbuena-Carabaña M, López de Heredia U, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162(3):492–506CrossRefGoogle Scholar
  45. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935PubMedCrossRefGoogle Scholar
  46. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8(4):753–756PubMedCrossRefGoogle Scholar
  47. Wei X, Jiang M (2012) Limited genetic impacts of habitat fragmentation in an “old rare” relict tree, Euptelea pleiospermum (Eupteleaceae). Plant Ecol 213:909–917CrossRefGoogle Scholar
  48. Whiteley RE (2004) Quantitative and molecular genetic variation in Ulmus laevis Pall. Dissertation, Swedish University of Agricultural SciencesGoogle Scholar
  49. Whiteley RE, Black-Samuelsson S, Clapham D (2003) Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Mol Ecol Notes 3:598–600CrossRefGoogle Scholar
  50. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562CrossRefGoogle Scholar
  51. Zalapa JE, Brunet J, Guries RP (2008) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.). Mol Ecol Resour 8(1):109–112Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martin Venturas
    • 1
  • Pablo Fuentes-Utrilla
    • 2
  • Richard Ennos
    • 2
  • Carmen Collada
    • 1
  • Luis Gil
    • 1
  1. 1.GENFOR Grupo de Investigación en Genética y Fisiología Forestal, Departamento de Silvopascicultura, E.T.S.I. de MontesUniversidad Politécnica de MadridMadridSpain
  2. 2.Institute of Evolutionary BiologyThe University of EdinburghEdinburghUK

Personalised recommendations