Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vegetation recovery and plant facilitation in a human-disturbed lava field in a megacity: searching tools for ecosystem restoration


Unplanned urban development threatens natural ecosystems. Assessing ecosystem recovery after anthropogenic disturbances and identifying plant species that may facilitate vegetation regeneration are critical for the conservation of biodiversity and ecosystem services in urban areas. At the periphery of Mexico City, illegal human settlements produced different levels of disturbance on natural plant communities developed on a lava field near the Ajusco mountain range. We assessed natural regeneration of plant communities 20 years after the abandonment of the settlements, in sites that received low (manual harvesting of non-timber forest products), medium (removal of aboveground vegetation), and high (removal of substrate and whole vegetation) disturbance levels. We also tested the potential facilitative role played by dominant tree and shrub species. Plant diversity and vegetation biomass decreased as disturbance level increased. Sites with high disturbance level showed poor regeneration and the lowest species similarity compared to the least disturbed sites. Six dominant species (i.e., those with the highest abundance, frequency, and/or basal area) were common to all sites. Among them, three species (the tree Buddleja cordata, and two shrubs, Ageratina glabrata and Sedum oxypetalum) were identified as potential facilitators of community regeneration, because plant density and species richness were significantly higher under their canopies than at open sites. We propose that analyzing community structural traits of the successional vegetation (such as species diversity and biomass) and identifying potential facilitator species are useful steps in assessing the recovery ability of plant communities to anthropogenic disturbances, and in designing restoration strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Aguilar AG (2008) Peri-urbanization, illegal settlements and environmental impact in Mexico City. Cities 25:133–145

  2. Austin PM (1977) Use of ordination and other multivariate descriptive methods to study succession. Plant Ecol 35:165–175

  3. Barkatullah HF, Ibrar M (2010) Allelopathic potential of Dodonaea viscosa (L.) Jacq. Pak J Bot 42:2383–2390

  4. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301

  5. Bonfil C, Soberón J (1999) Quercus rugosa seedling dynamics in relation to its re-introduction in a disturbed Mexican landscape. Appl Veg Sci 2:189–200

  6. Bonfil C, Pisanty I, Mendoza A, Soberón J (1997) Investigación y restauración ecológica: el caso del Ajusco Medio. Ciencia y Desarrollo 135:15–23

  7. Briske DD, Fuhlendorf SD, Smeins FE (2005) State-and-transition models thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. Rangeland Ecol Manage 58:1–10

  8. Brooker WR, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörg K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34

  9. Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549

  10. Cano-Santana Z, Pisanty I, Segura S, Mendoza-Hernández PE, León-Rico R, Soberón J, Tovar E, Martínez-Romero E, Ruiz LC, Martínez-Ballesté A (2006) Ecología, conservación, restauración y manejo de las áreas naturales y protegidas del Pedregal del Xitle. In: Oyama K, Castillo A (eds) Manejo, conservación y restauración de recursos naturales en México. Universidad Nacional Autónoma de México and Siglo XXI, México, pp 203–226

  11. Castillo-Argüero S, Montes-Cartas G, Romero-Romero MA, Martínez-Orea Y, Guadarrama-Chávez P, Sánchez-Gallén I, Núñez-Castillo O (2004) Dinámica y conservación de la flora del matorral xerófilo de la Reserva Ecológica del Pedregal de San Ángel (D. F., México). Bol Soc Bot Mex 74:51–75

  12. Castro J, Zamora R, Hódar JA, Gómez JM (2002) The use of shrubs as nurse plants: a new technique for reforestation in Mediterranean mountains. Restor Ecol 10:279–305

  13. Castro-Colina L, Martínez-Ramos M, Sánchez-Coronado ME, Huante P, Mendoza A, Orozco-Segovia A (2011) Effect of hydropriming and acclimation treatments on Quercus rugosa acorns and seedling. Eur J For Res 131:747–756

  14. Coop NC, Wulder MA, White JC (2007) Identifying and describing forest disturbance and spatial pattern: data selection issues and methodological implications. In: Wulder MA, Franklin SE (eds) Understanding forest disturbance and spatial pattern. Remote sensing and GIS approaches. Taylor & Francis Group, Boca Raton, pp 31–62

  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege Ht, Morgan HD, Heijden vander MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian J Bot 51:335–380

  16. Crawley MJ (1993) GLIM for ecologists. Blackwell, Oxford

  17. Crosti R, Dixon KW, Ladd PG, Yates CJ (2007) Changes in the structure and species dominance in vegetation over 60 years in an urban bushland remnant. Pac Conserv Biol 13:158–170

  18. de Rzedowski GC, Rzedowski J (2005) Flora fanerogámica del Valle de México. Instituto de Ecología, AC y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, México

  19. Díaz S, Symstand AJ, Chapin FS III, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

  20. Fattorini M, Halle S (2004) The dynamic environmental filter model: how do filtering effects change in assembling communities after disturbance. In: Temperton VM, Hobbs RJ, Nuttle T (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC, pp 96–114

  21. Flores J, Jurado E (2003) Are nurse-protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916

  22. Godínez-Alvarez H, Valiente-Banuet A, Rojas-Martínez A (2002) The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83:2617–2629

  23. González-Hidalgo B, Orozco-Segovia A, Diego-Pérez N (2001) La vegetación de la reserva ecológica Lomas del Seminario, Ajusco, México. Bol Soc Bot Mex 69:77–99

  24. Hobbs RJ, Jentsch A, Temperton V (2007) Restoration as a process of assembly and succession mediated by disturbance. In: Walker RL, Walker J, Hobbs JR (eds) Linking restoration and ecological succession. Springer, New York, pp 150–167

  25. Kikvidze Z, Armas C (2010) Plant interaction indices based on experimental plant performance data. In: Pugnaire IF (ed) Positive plant interactions and community dynamics. CRC Press, Fundación BBVA, Boca Raton, pp 17–37

  26. Kim YM, Zerbe S, Kowarik I (2002) Human impact on flora and habitat in Korean rural settlements. Preslia Praha 74:409–419

  27. Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431

  28. Maestre FT, Cortina J, Vallejo R (2006) Are ecosystem composition, structure and functional status related to restoration success? A test from semiarid Mediterranean steppes. Restor Ecol 14:258–266

  29. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

  30. Maraschin-Silva F, Aqüila AME (2005) Potencial alelopático de Dodonaea viscosa (L.) Jacq. Iheringia 60:91–98

  31. Martínez-Villegas JA, Orozco-Segovia A, Sánchez-Coronado ME, Pisanty I (2012) Germination of Sedum oxypetalum (Crassulacea) in a primary lava-field shurbland. Plant Ecol 213:871–881

  32. McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5, MjM Software, Gleneden Beach

  33. Mendoza-Hernández PE, Orozco-Segovia A, Pisanty I (2010) Germination, emergence, and survival of Buddleja cordata in an urban forest. Ecol Restor 28:263–265

  34. Newton AC, Cayuela L, Echeverria C, Armesto JJ, Del Castillo RF, Golicher D, Geneletii D, Gonzalez-Espinosa M, Huth A, López-Barrera F, Malizia L, Manson R, Premoli A, Ramírez-Marcial N, Rey Benayas JM, Rüger N, Smith-Ramírez C, Willians-Linera G (2009) Toward integrated analysis of human impacts on forest biodiversity: lessons from Latin America. Ecol and Soc 14(2):2 Accessed 12 March 2010

  35. Olvera-Carrillo Y, Mendez I, Sánchez-Coronado ME, Márquez-Guzmán J, Barradas VL, Huante P, Orozco-Segovia A (2009) Effect of environmental heterogeneity on field germination of Opuntia tomentosa (Cactaceae, Opuntioideae) seeds. J Arid Environ 73:414–420

  36. Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM (2010) Is there environmental differentiation in the Quercus-dominated forest of west-central Mexico? Plant Ecol 211:321–335

  37. Rao LE, Steers RJ, Allen EB (2011) Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California desert. Plant Ecol 212:1079–1089

  38. Rey Benayas JM, Bullock JM, Newton AC (2008) Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Front Ecol Environ 6:329–336

  39. Rzedowski J (1954) Vegetación del Pedregal de San Ángel (Distrito Federal, México). An Esc Nac Cien Biol 8:59–129

  40. Rzedowski J, de Rzedowski GC (1989) Sinopsis numérica de la flora fanerogámica del Valle de México. Acta Bot Mex 8:15–30

  41. Siebe C (2000) Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City. J Volcanol Geoth Res 104:45–64

  42. Solbrig O (1994) Plant trait and adaptive strategies: their role in ecosystem function. In: Shultze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 97–116

  43. Yarranton GA, Morrison RG (1974) Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428

  44. Young PT, Chase MJ, Huddleston TR (2001) Community succession and assembly. Comparing, contrasting and combining paradigms in the context of ecological restoration. Ecol Restor 19:5–18

  45. Zaragoza HC, Miceli LJA (2006) Diversidad de especies del Parque Ecológico de la Ciudad de México. GDF and CONABIO, México

  46. Ziarnek M (2007) Human impact on plant communities in urban areas assessed with hemeroby grades. Pol J Ecol 55:161–167

Download references


This paper constitutes a partial fulfillment of the Graduate Programa en Ciencias Biologicas, Universidad Nacional Autónoma de México (UNAM). PEMH also acknowledges the Dirección General Asuntos del Personal Académico (DGAPA-UNAM) for a PhD scholarship. Financial support was also provided by the PAPIIT-UNAM program (Grant no. IN222508). We thank Susana Valencia-Ávalos and Beatriz González-Hidalgo for taxonomical determinations, María Esther Sánchez-Coronado and Mauricio Villegas for field and laboratory assistance, and Alejandro González-Ponce and Daniel Valle-Vidal for technical support. The Servicio Meteorológico Nacional kindly made available weather data from the Ecoguardas meteorological station. MMR acknowledge the sabbatical fellowships from Programa de Apoyo para la Superación del Personal Académico (PASPA)-DGAPA (UNAM) and Consejo Nacional de Ciencia y Técnologia (CONACyT).

Author information

Correspondence to Miguel Martínez-Ramos.



See Table 2.

Table 2 List of species registered at sites with high-, medium-, and low-disturbance level in the Parque Ecológico de la Ciudad de México

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mendoza-Hernández, P.E., Orozco-Segovia, A., Meave, J.A. et al. Vegetation recovery and plant facilitation in a human-disturbed lava field in a megacity: searching tools for ecosystem restoration. Plant Ecol 214, 153–167 (2013).

Download citation


  • Biodiversity
  • Mexico
  • Oak forest
  • Secondary succession
  • Species richness
  • Xerophytic vegetation