Plant Ecology

, Volume 213, Issue 11, pp 1781–1792 | Cite as

Micro-evolutionary patterns of juvenile wood density in a pine species

  • Jean-Baptiste Lamy
  • Frédéric Lagane
  • Christophe Plomion
  • Hervé Cochard
  • Sylvain Delzon


Wood density can be considered an adaptive trait, because it ensures the safe and efficient transport of water from the roots to the leaves, mechanical support for the body of the plant and the storage of biological chemicals. Its variability has been extensively described in narrow genetic backgrounds and in wide ranges of forest tree species, but little is known about the extent of natural genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for the evaluation of its inclusion in breeding programs. We assessed juvenile wood density, leaf area, total aboveground biomass, and growth in six Pinus pinaster populations of different geographic origins (France, Spain, and Morocco) growing in a provenance-progeny trial. No genetic differentiation was found for wood density, whereas all other traits significantly differed between populations. Heritability of this trait was moderate, with a low additive genetic variance. For retrospective identification of the evolutionary forces acting on juvenile wood density, we compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST). We found that Q ST was significantly lower than F ST, suggesting evolutionary stasis. Furthermore, we did not detect any relationship between juvenile wood density and drought tolerance (resistance to cavitation), suggesting that this trait could not be used as a proxy for drought tolerance at the intraspecific level.


Canalization Heritability QST/FST comparison Pine Evolutionary stasis Juvenile wood density 



SD and JBL received funding from INRA-EFPA (innovative project Grant) and a PhD Grant from INRA Région Auvergne, respectively. This trial was set up by the experimental unit of INRA Pierroton within the Treesnips EC-funded project (QLK3-CT-2002-01973). Cavitation resistance, wood density and leaf area were measured with fundings from the European Union (Noveltree project, FP7-21868). We thank Emmanuelle Eveno and Pauline Garnier-Géré for sharing biomass data.


  1. Aguiar A, Almeida MH, Borralho N (2003) Genetic control of growth, wood density and stem characteristics of Pinus pinaster in Portugal. Genetica 11:131–139Google Scholar
  2. Apiolaza LA (2011) Basic density of radiata pine in New Zealand: genetic and environmental factors. Tree Genet. Genomes. doi: 10.1007/s11295-011-0423-1
  3. Apiolaza LA, Garrick DJ (2001) Analysis of longitudinal data from progeny tests: some multivariate approaches. For Sci 47:129–140Google Scholar
  4. Bouffier L, Rozenberg P, Raffin A, Kremer A (2008) Wood density variability in successive breeding populations of maritime pine. Can J For Res 38:2148–2158CrossRefGoogle Scholar
  5. Bradshaw AD (1991) The Croonian Lecture, 1991. Genostasis and the limits to evolution. Philos Trans R Soc Lond B 333:289–305CrossRefGoogle Scholar
  6. Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584PubMedCrossRefGoogle Scholar
  7. Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495PubMedCrossRefGoogle Scholar
  8. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367PubMedCrossRefGoogle Scholar
  9. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366PubMedCrossRefGoogle Scholar
  10. Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees. doi: 10.1007/s00468-011-0578-2
  11. Creese C, Benscoter A, Maherali H (2011) Xylem function and climate adaptation in Pinus. Am J Bot 98(9):1437–1445PubMedCrossRefGoogle Scholar
  12. Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2011) Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)). Ann For Sci 68:747–757CrossRefGoogle Scholar
  13. Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111PubMedCrossRefGoogle Scholar
  14. Eveno E (2008) L’adaptation à la sécheresse chez le pin maritime (Pinus pinaster): patrons de diversité et différenciation nucléotidiques de gènes candidats et variabilité de caractères phénotypiques. Thesis, University of Bordeaux 1, pp 1–390Google Scholar
  15. Eveno E, Collada C, Guevara MA, Léger V, Soto A, Díaz L, Léger P, González-Martínez SC, Cervera MT, Plomion C et al (2008) Contrasting patterns of selection at Pinus pinaster drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437PubMedCrossRefGoogle Scholar
  16. Figueroa JA, Lusk CH (2001) Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol 152:483–489CrossRefGoogle Scholar
  17. Gapare WJ, Ivković M, Baltunis BS, Matheson CA, Wu HX (2009) Genetic stability of wood density and diameter in Pinus radiata D. Don plantation estate across Australia. Tree Genet Genomes 6:113–125CrossRefGoogle Scholar
  18. Gilchrist AS, Partridge L (2001) The contrasting genetic architecture of wing size and shape in Drosophila melanogaster. Heredity 86:144–152PubMedCrossRefGoogle Scholar
  19. Goudet J, Buchi L (2006) The effects of dominance, regular inbreeding and sampling design on QST, an estimator of population differentiation for quantitative traits. Genet. 172:1337–1347CrossRefGoogle Scholar
  20. Gould SJ, Lewontin RC (1979) Spandrels of San-Marco and the panglossian paradigm—a critique of the adaptationist program. Proc R Soc Lond B 205:581–598PubMedCrossRefGoogle Scholar
  21. Guay R, Gagnon R, Morin H (1992) A new automatic and interactive tree ring measurement system based on a line scan camera. For. Chron. 68:138–141Google Scholar
  22. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115CrossRefGoogle Scholar
  23. Hansen TF, Houle D (2004) Evolvability, stabilizing selection and the problem of stasis. In: Pigliucci M, Preston K (eds) The evolutionary biology of complex phenotypes. Oxford University Press, Oxford, pp 1–27Google Scholar
  24. Houle D (1992) Comparing evolvabiliy and variability of quantitative traits. Genet. 130:195–204Google Scholar
  25. Jansen S, Lamy J-B, Burlett R, Cochard H, Gasson P, Delzon S (2012) Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant and cell Environ. doi:  10.1111/j.1365-3040.2011.02476.x
  26. Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740PubMedCrossRefGoogle Scholar
  27. Knap PW (2005) Breeding robust pigs. Aust J Exp Agric 45:763–773CrossRefGoogle Scholar
  28. Kosorok MR (1999) Two-sample quantile tests under general conditions. Biometrika 86:909–921CrossRefGoogle Scholar
  29. Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 6:e23476PubMedCrossRefGoogle Scholar
  30. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms. Genetics 74:175–195PubMedGoogle Scholar
  31. Littell RC, Pendergast J, Natarajan R (2000) Modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819PubMedCrossRefGoogle Scholar
  32. Lopez-Fanjul C, Fernandez A, Toro MA (2007) The effect of dominance on the use of the QST-FST contrast to detect natural selection on quantitative traits. Genetics 176:725–727PubMedCrossRefGoogle Scholar
  33. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, pp 1–980Google Scholar
  34. Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. N Phytol 191:480–495CrossRefGoogle Scholar
  35. Martinez-Meier A, Sanchez L, Pastorino M, Gallo L, Rozenberg P (2008) What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manag 256:837–843CrossRefGoogle Scholar
  36. Martinez-Meier A, Gallo L, Pastorino M, Mondino V, Rozenberg P (2011) Phenotypic variation of basic wood density in Pinus ponderosa plus trees. Bosque (Valdivia) 32:221–226CrossRefGoogle Scholar
  37. Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nole A, Poyatos R et al (2009) Hydraulic adjustment of Scots pine across Europe. N Phytol 184:353–364CrossRefGoogle Scholar
  38. McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec J-C (2011) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia 167:27–37PubMedCrossRefGoogle Scholar
  39. Milton CC, Huynh B, Batterham P, Rutherford SL, Hoffmann AA (2003) Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci USA 100:13396–13401PubMedCrossRefGoogle Scholar
  40. Mormede P, Foury A, Terenina E, Knap PW (2011) Breeding for robustness: the role of cortisol. Animal 5:651–657PubMedCrossRefGoogle Scholar
  41. O’Hara RB, Merilä J (2005) Bias and precision in QST estimates: problems and some solutions. Genetics 171:1331–1339PubMedCrossRefGoogle Scholar
  42. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214CrossRefGoogle Scholar
  43. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523PubMedCrossRefGoogle Scholar
  44. Polge H (1966) Etablissement des courbes de variation de la densité du bois par exploration densitométrique de radiographie d’échantillons prélevés à la tarière sur des arbres vivants. Ann Sci For 23:1–206CrossRefGoogle Scholar
  45. Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. N Phytol 185:481–492CrossRefGoogle Scholar
  46. Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877PubMedCrossRefGoogle Scholar
  47. Richardson DM (1998) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 1–527Google Scholar
  48. Rosner S, Klein A, Müller U, Karlsson B (2008) Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood. Tree Physiol 28:1179–1188PubMedCrossRefGoogle Scholar
  49. Sangster TA, Salathia N, Undurraga S, Milo R, Schelienberg K, Lindquist S, Queitsch C (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci USA 105:2963–2968PubMedCrossRefGoogle Scholar
  50. SAS II (2008) SAS/STAT® 9.2 User’s Guide. SAS Institute Inc, CaryGoogle Scholar
  51. Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114CrossRefGoogle Scholar
  52. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374PubMedGoogle Scholar
  53. Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globutus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes 2:30–38CrossRefGoogle Scholar
  54. Tremblay M, Simon JP (1989) Genetic-structure of marginal populations of white spruce (Picea glauca) at its northern limit of distribution in nouveau-Québec. Can J For Res 19:1371–1379CrossRefGoogle Scholar
  55. Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463CrossRefGoogle Scholar
  56. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266PubMedCrossRefGoogle Scholar
  57. Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218CrossRefGoogle Scholar
  58. Waldmann P, García-Gil MR, Sillanpää MJ (2005) Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris. Heredity 94:623–629PubMedCrossRefGoogle Scholar
  59. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268PubMedCrossRefGoogle Scholar
  60. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  61. Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896PubMedCrossRefGoogle Scholar
  62. Whitlock MC, Guillaume F (2009) Testing for spatially divergent selection: comparing QST to FST. Genetics 183:1055–1063PubMedCrossRefGoogle Scholar
  63. Wilson AJ (2008) Why h2 does not always equal VA/VP? J Evol Biol 21:647–650PubMedCrossRefGoogle Scholar
  64. Wortemann R (2011) Etude de la variabilité génétique et la plasticité phénotypique de la vulnérabilité à la cavitation chez Fagus sylvatica. Thesis, University of Blaise Pascal, pp 1–154Google Scholar
  65. Yang RC, Yeh FC, Yanchuk AD (1996) A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by FST. Genetics 142:1045–1052PubMedGoogle Scholar
  66. Zamudio F, Baettyg R, Vergara A, Guerra F (2002) Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test. Ann For Sci 59:541–549CrossRefGoogle Scholar
  67. Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: globla patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jean-Baptiste Lamy
    • 1
    • 2
    • 3
  • Frédéric Lagane
    • 1
    • 2
  • Christophe Plomion
    • 1
    • 2
  • Hervé Cochard
    • 3
  • Sylvain Delzon
    • 1
    • 2
    • 4
  1. 1.INRA, UMR 1202 BIOGECOCestasFrance
  2. 2.Université de Bordeaux, UMR 1202 BIOGECOTalenceFrance
  3. 3.INRA, UMR 547 PIAFUniversity of Blaise PascalClermont-FerrandFrance
  4. 4.Department of Agriculture, Food & Natural ResourcesUniversity of SydneyEveleighAustralia

Personalised recommendations