Plant Ecology

, Volume 213, Issue 4, pp 591–602 | Cite as

Environmental control of species richness and composition in upland grasslands of the southern Czech Republic

  • Kristina MerunkováEmail author
  • Milan Chytrý


Biodiversity of Central European semi-natural upland grasslands is steadily declining, due to either abandonment or management intensification. Although there are several descriptive overviews of their vegetation, quantitative information on the relationship between their species richness or composition and environmental factors is still scarce. We sampled upland grasslands in the southern part of the Czech Republic in order to determine the main soil variables affecting diversity of their vegetation. The relationships between species richness and environmental variables were tested using correlation analysis and regression trees, and the relationship between species composition and environment using detrended correspondence analysis and canonical correspondence analysis. Of soil variables, species richness of vascular plants was most strongly affected by phosphorus and, less so, by potassium and organic matter, with higher richness in habitats with less phosphorus, potassium, and organic matter. Grasslands on soils with pH < 4.6 were species-poor, but across the rest of the pH range richness was independent of pH. Most bryophyte species were present on low-pH soils poor in calcium and phosphorus and on organic soils. Red List species were best represented in fen meadows on organic soils with high calcium and low pH. Major determinants of floristic composition were soil moisture, nutrient availability, and soil pH. This study shows that conservation management of these grasslands should focus on reducing phosphorus input and protecting groundwater discharge areas from drainage.


Bryophytes Diversity Moisture Nutrients Phosphorus Soil chemistry Soil pH Vascular plants 



We thank Rob Marrs for various advice and for making laboratory analyses possible during the Erasmus stay of K.M. in the Applied Vegetation Dynamics Laboratory of the University of Liverpool, and David Zelený for calculation of the modified permutation tests for Ellenberg Indicator Values. This study was funded by the Ministry of Education of the Czech Republic (MSM0021622416).

Supplementary material

11258_2012_24_MOESM1_ESM.xls (1.6 mb)
Supplementary material 1 (XLS 1646 kb)


  1. Allen SE (1989) Chemical analysis of ecological materials. Blackwell, OxfordGoogle Scholar
  2. Amador JA, Jones RD (1993) Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol Biochem 25:793–801CrossRefGoogle Scholar
  3. Aude E, Ejrnæs R (2005) Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos 109:323–330CrossRefGoogle Scholar
  4. Balátová-Tuláčková E (2003) Společenstva zamokřených luk řádu Molinietalia v jižní části Českomoravské vrchoviny. Vlastiv Sborn Vysočiny 16:63–94Google Scholar
  5. Bergamini A, Pauli D, Peintinger M et al (2001) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929CrossRefGoogle Scholar
  6. Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  7. Chytrý M (ed) (2007) Vegetace České republiky 1. Travinná a keříčková vegetace/Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Academia, PrahaGoogle Scholar
  8. Chytrý M (ed) (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace/Vegetation of the Czech Republic 3. Aquatic and wetland vegetation. Academia, PrahaGoogle Scholar
  9. Chytrý M, Tichý L, Roleček J (2003) Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38:429–442CrossRefGoogle Scholar
  10. Chytrý M, Danihelka J, Ermakov N et al (2007) Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecol Biogeogr 16:668–678CrossRefGoogle Scholar
  11. Chytrý M, Hejcman M, Hennekens SM et al (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. Appl Veg Sci 12:167–176CrossRefGoogle Scholar
  12. Cousins SAO, Lindborg R, Mattsson S (2009) Land use history and site location are more important for grassland species richness than local soil properties. Nord J Bot 27:483–489CrossRefGoogle Scholar
  13. Crawley MJ, Johnston AE, Silvertown J et al (2005) Determinants of species richness in the Park Grass Experiment. Am Nat 165:179–192PubMedCrossRefGoogle Scholar
  14. Critchley CNR, Chambers BJ, Fowbert JA et al (2002) Association between lowland grassland plant communities and soil properties. Biol Conserv 105:199–215CrossRefGoogle Scholar
  15. Ejrnæs R, Bruun HH (2000) Gradient analysis of dry grassland vegetation in Denmark. J Veg Sci 11:573–584CrossRefGoogle Scholar
  16. Elberse WT, van den Bergh JP, Dirven JGP (1983) Effects of use and mineral supply on the botanical composition and yield of old grassland on heavy clay soil. Neth J Agr Sci 31:62–88Google Scholar
  17. Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, CambridgeGoogle Scholar
  18. Ellenberg H, Weber HE, Düll R et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258Google Scholar
  19. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366CrossRefGoogle Scholar
  20. Gould WA, Walker MD (1999) Plant communities and landscape diversity along a Canadian Arctic river. J Veg Sci 10:537–548CrossRefGoogle Scholar
  21. Grevilliot F, Krebs L, Muller S (1998) Comparative importance and interference of hydrological conditions and soil nutrient gradients in floristic biodiversity in flood meadows. Biodivers Conserv 7:1495–1520CrossRefGoogle Scholar
  22. Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  23. Hájek M, Hájková P (2004) Environmental determinants of variation in Czech Calthion wet meadows: a synthesis of phytosociological data. Phytocoenologia 34:33–54CrossRefGoogle Scholar
  24. Hájková P, Hájek M (2004) Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot 39:335–351CrossRefGoogle Scholar
  25. Havlová M, Chytrý M, Tichý L (2004) Diversity of hay meadows in the Czech Republic: major types and environmental gradients. Phytocoenologia 34:551–567CrossRefGoogle Scholar
  26. Hejcman M, Klaudisová M, Schellberg J et al (2007a) The Rengen Grassland Experiment: Plant species composition after 64 years of fertilizer application. Agr Ecosyst Environ 122:259–266CrossRefGoogle Scholar
  27. Hejcman M, Klaudisová M, Štursa J et al (2007b) Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agr Ecosyst Environ 118:231–236CrossRefGoogle Scholar
  28. Hejcman M, Schellberg J, Pavlů V (2010) Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer application. Appl Veg Sci 13:257–269Google Scholar
  29. Holub J, Procházka F (2000) Red List of vascular plants of the Czech Republic—2000. Preslia 72:187–230Google Scholar
  30. Janišová M, Hájková P, Hegedüšová K et al (2007) Travinnobylinná vegetácia Slovenska – elektronický expertný systém na identifikáciu syntaxónov. Botanický ústav SAV, BratislavaGoogle Scholar
  31. Janssens F, Peeters A, Tallowin JRB et al (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78CrossRefGoogle Scholar
  32. Kalusová V, Le Duc MG, Gilbert JC et al (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12:459–471CrossRefGoogle Scholar
  33. Klimek S, Kemmermann AR, Hofmann M et al (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570CrossRefGoogle Scholar
  34. Köhler B, Ryser P, Güsewell S et al (2001) Nutrient availability and limitation in traditionally mown and in abandoned limestone grasslands: a bioassay experiment. Plant Soil 230:323–332CrossRefGoogle Scholar
  35. Kopec M, Zarzycki J, Gondek K (2010) Species diversity of submontane grasslands: effects of topographic and soil factors. Pol J Ecol 58:285–295Google Scholar
  36. Královec J, Pocová L, Jonášová M et al (2009) Spontaneous recovery of an intensively used grassland after cessation of fertilizing. Appl Veg Sci 12:391–397CrossRefGoogle Scholar
  37. Kubát K, Hrouda L, Chrtek J Jr et al (eds) (2002) Klíč ke květeně České republiky. Academia, PrahaGoogle Scholar
  38. Kučera T, Váňa J (2003) Check- and Red List of bryophytes of the Czech Republic (2003). Preslia 75:193–222Google Scholar
  39. Linusson AC, Berlin GAI, Olsson EGA (1998) Reduced community diversity in seminatural meadows in southern Sweden, 1965–1990. Plant Ecol 136:77–94CrossRefGoogle Scholar
  40. Löbel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot 41:377–393CrossRefGoogle Scholar
  41. Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300CrossRefGoogle Scholar
  42. McCrea AR, Trueman IC, Fullen MA et al (2001) Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands. Biol Conserv 97:171–180CrossRefGoogle Scholar
  43. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  44. Michalcová D, Gilbert JC, Lawson CS et al (2011) The combined effect of waterlogging, extractable P and soil pH on α-diversity: a case study on mesotrophic grasslands in the UK. Plant Ecol 212:879–888CrossRefGoogle Scholar
  45. Mountford JO, Lakhani KH, Holland RJ (1996) Reversion of grassland vegetation following the cessation of fertilizer application. J Veg Sci 7:219–228CrossRefGoogle Scholar
  46. Mucina L, Grabherr G, Ellmauer T (eds) (1993) Die Pflanzengesellschaften Österreichs Teil I. Anthropogene Vegetation. Gustav Fischer Verlag, Jena Stuttgart New YorkGoogle Scholar
  47. Oberdorfer E (ed) (1993a) Süddeutsche Pflanzengesellschaften. Teil II. Sand- und Trockenrasen, Heide- und Borstgras-Gesellschaften, alpine Magerrasen, Saum-Gesellschaften, Schlag- und Hochstauden-Fluren. Gustav Fischer Verlag, Jena Stuttgart New YorkGoogle Scholar
  48. Oberdorfer E (ed) (1993b) Süddeutsche Pflanzengesellschaften Teil III. Wirtschaftswiesen und Unkrautgesellschaften. Gustav Fischer Verlag, Jena Stuttgart New YorkGoogle Scholar
  49. Oomes MJM (1990) Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. J Veg Sci 1:333–338CrossRefGoogle Scholar
  50. Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366Google Scholar
  51. Pärtel M, Helm A, Ingerpuu N et al (2004) Conservation of Northern European plant diversity: the correspondence with soil pH. Biol Conserv 120:525–531CrossRefGoogle Scholar
  52. Prévosto B, Kuiters L, Bernhardt-Römermann M et al (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobot 46:303–325CrossRefGoogle Scholar
  53. Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161CrossRefGoogle Scholar
  54. Růžička I (1987) Výsledky záchranného výzkumu ohrožené květeny mizejících rašelinišť a rašelinných luk na Jihlavsku. Vlastiv Sborn Vysočiny 8:153–192Google Scholar
  55. Rybníček K (1974) Die Vegetation der Moore im südlichen Teil der Böhmisch-Mährischen Höhe. Academia, PrahaGoogle Scholar
  56. Rychnovská M (ed) (1993) Structure and functioning of seminatural meadows. Elsevier, AmsterdamGoogle Scholar
  57. Schaffers AP, Vesseur MC, Sýkora KV (1998) Effects of delayed hay removal on the nutrient balance of roadside plant communities. J Appl Ecol 35:349–364CrossRefGoogle Scholar
  58. Schuster B, Diekmann M (2003) Changes in species density along the soil pH gradient – evidence from German plant communities. Folia Geobot 38:367–379CrossRefGoogle Scholar
  59. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen České BudějoviceGoogle Scholar
  60. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  61. Tolasz R (ed) (2007) Atlas podnebí Česka/Climate atlas of Czechia. ČHMÚ & UP, Praha OlomoucGoogle Scholar
  62. Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobot 38:419–428CrossRefGoogle Scholar
  63. van Duren IC, Pegtel DM, Aerts BA et al (1997) Nutrient supply in undrained and drained Calthion meadows. J Veg Sci 8:829–838CrossRefGoogle Scholar
  64. Virtanen R, Johnston AE, Crawley MJ et al (2000) Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecol 151:129–141CrossRefGoogle Scholar
  65. Wassen MJ, Olde Venterink H, Lapshina ED et al (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550PubMedCrossRefGoogle Scholar
  66. Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. W. Junk, The Hague, pp 289–399Google Scholar
  67. Willems JH, Peet RK, Bik L (1993) Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212CrossRefGoogle Scholar
  68. Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci. doi: 10.1111/j.1654-1103.2011.01366.x Google Scholar
  69. Zelnik I, Čarni A (2008) Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Commun Ecol 9:1–9CrossRefGoogle Scholar
  70. Zinko U, Dynesius M, Nilsson C et al (2006) The role of soil pH in linking groundwater flow and plant species density in boreal forest landscapes. Ecography 29:515–524CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations